TY - JOUR T1 - A Novel Approach for Multi-Domain and Multi-Gene Family Identification Provides Insights into Evolutionary Dynamics of Disease Resistance Genes in Core Eudicot Plants JF - bioRxiv DO - 10.1101/002766 SP - 002766 AU - Johannes A. Hofberger AU - Beifei Zhou AU - Haibao Tang AU - Jonathan D. G. Jones AU - M. Eric Schranz Y1 - 2014/01/01 UR - http://biorxiv.org/content/early/2014/02/17/002766.abstract N2 - Recent advances in DNA sequencing techniques resulted in more than forty sequenced plant genomes representing a diverse set of taxa of agricultural, energy, medicinal and ecological importance. However, gene family curation is often only inferred from DNA sequence homology and lacks insights into evolutionary processes contributing to gene family dynamics. In a comparative genomics framework, we integrated multiple lines of evidence provided by gene synteny, sequence homology and protein-based Hidden Markov Modelling to extract homologous super-clusters composed of multi-domain resistance (R)-proteins of the NB-LRR type (for NUCLEOTIDE BINDING/LEUCINE-RICH REPEATS), that are involved in plant innate immunity. To assess the diversity of R-proteins within and between species, we screened twelve eudicot plant genomes including six major crops and found a total of 2,363 NB-LRR genes. Our curated R-proteins set shows a 50% average for tandem duplicates and a 22% fraction of gene copies retained from ancient polyploidy events (ohnologs). We provide evidence for strong positive selection acting on all identified genes and show significant differences in molecular evolution rates (Ka/Ks-ratio) among tandem- (mean = 1.59), ohnolog (mean = 1.36) and singleton (mean = 1.22) R-gene duplicates. To foster the process of gene-edited plant breeding, we report species-specific presence/absence of all 140 NB-LRR genes present in the model plant Arabidopsis and describe four distinct clusters of NB-LRR “gatekeeper” loci sharing syntelogs across all analyzed genomes. In summary, we designed and implemented an easy-to-follow computational framework for super-gene family identification, and provide the most curated set of NB-LRR genes whose genetic versatility among twelve lineages can underpin crop improvement. ER -