%0 Journal Article %A Camille Roux %A John R. Pannell %T Investigating speciation in face of polyploidization: what can we learn from approximate Bayesian computation approach? %D 2014 %R 10.1101/002527 %J bioRxiv %P 002527 %X Despite its importance in the diversification of many eucaryote clades, particularly plants, detailed genomic analysis of polyploid species is still in its infancy, with published analysis of only a handful of model species to date. Fundamental questions concerning the origin of polyploid lineages (e.g., auto- vs. allopolyploidy) and the extent to which polyploid genomes display disomic vs. polysomic vs. heterosomic inheritance are poorly resolved for most polyploids, not least because they have hitherto required detailed karyotypic analysis or the analysis of allele segregation at multiple loci in pedigrees or artificial crosses, which are often not practical for non-model species. However, the increasing availability of sequence data for non-model species now presents an opportunity to apply established approaches for the evolutionary analysis of genomic data to polyploid species complexes. Here, we ask whether approximate Bayesian computation (ABC), applied to sequence data produced by next-generation sequencing technologies from polyploid taxa, allows correct inference of the evolutionary and demographic history of polyploid lineages and their close relatives. We use simulations to investigate how the number of sampled individuals, the number of surveyed loci and their length affect the accuracy and precision of evolutionary and demographic inferences by ABC, including the mode of polyploidisation, mode of inheritance of polyploid taxa, the relative timing of genome duplication and speciation, and effective populations sizes of contributing lineages. We also apply the ABC framework we develop to sequence data from diploid and polyploidy species of the plant genus Capsella, for which we infer an allopolyploid origin for tetra C. bursa-pastoris ≈ 90,000 years ago. In general, our results indicate that ABC is a promising and powerful method for uncovering the origin and subsequent evolution of polyploid species. %U https://www.biorxiv.org/content/biorxiv/early/2014/02/09/002527.full.pdf