TY - JOUR T1 - A common framework for identifying linkage rules across different types of interactions JF - bioRxiv DO - 10.1101/024315 SP - 024315 AU - I. Bartomeus AU - D. Gravel AU - J.M. Tylianakis AU - M.A. Aizen AU - I. A. Dickie AU - M. Bernard-Verdier Y1 - 2015/01/01 UR - http://biorxiv.org/content/early/2015/08/10/024315.abstract N2 - Species interactions, ranging from antagonisms to mutualisms, form the architecture of biodiversity and determine ecosystem functioning. Understanding the rules responsible for who interacts with whom, as well as the functional consequences of these interspecific interactions, is central to predicting community dynamics and stability. Species traits sensu lato may affect different ecological processes determining species interactions through a two-step process. First, ecological and life-history traits govern species distributions and abundance, and hence determine species co-occurrence, which is a prerequisite for them to interact. Second, morphological traits between co-occurring potential interaction partners should match for the realization of an interaction. Moreover, inferring functioning from a network of interactions may require the incorporation of interaction efficiency. This efficiency may be also trait-mediated, and can depend on the extent of matching, or on morphological, physiological or behavioural traits. It has been shown that both neutral and trait-based models can predict the general structure of networks, but they rarely accurately predict individual interactions, suggesting that these models may be predicting the right structure for the wrong reason. We propose to move away from testing null models with a framework that explicitly models the probability of interaction among individuals given their traits. The proposed models integrate both neutral and trait-matching constraints while using only information about known interactions, thereby overcoming problems originating from under-sampling of rare interactions (i.e. missing links). They can easily accommodate qualitative or quantitative data, and can incorporate trait variation within species, such as values that vary along developmental stages or environmental gradients. We use three case studies to show that they can detect strong trait matching (e.g. predator-prey system), relaxed trait matching (e.g. herbivore-plant system) and barrier trait matching (e.g. plant-pollinator systems). Only by elucidating which species traits are important in each process, i.e. in determining interaction establishment, frequency, and efficiency, can we advance in explaining how species interact and the consequences for ecosystem functioning. ER -