TY - JOUR T1 - Automated and accurate estimation of gene family abundance from shotgun metagenomes JF - bioRxiv DO - 10.1101/022335 SP - 022335 AU - Stephen Nayfach AU - Patrick H. Bradley AU - Stacia K. Wyman AU - Timothy J. Laurent AU - Alex Williams AU - Jonathan A. Eisen AU - Katherine S. Pollard AU - Thomas J. Sharpton Y1 - 2015/01/01 UR - http://biorxiv.org/content/early/2015/07/10/022335.abstract N2 - Shotgun metagenomic DNA sequencing is a widely applicable tool for characterizing the functions that are encoded by microbial communities. Several bioinformatic tools can be used to functionally annotate metagenomes, allowing researchers to draw inferences about the functional potential of the community and to identify putative functional biomarkers. However, little is known about how decisions made during annotation affect the reliability of the results. Here, we use statistical simulations to rigorously assess how to optimize annotation accuracy and speed, given parameters of the input data like read length and library size. We identify best practices in metagenome annotation and use them to guide the development of the Shotgun Metagenome Annotation Pipeline (ShotMAP). ShotMAP is an analytically flexible, end-to-end annotation pipeline that can be implemented either on a local computer or a cloud compute cluster. We use ShotMAP to assess how different annotation databases impact the interpretation of how marine metagenome and metatranscriptome functional capacity changes across seasons. We also apply ShotMAP to data obtained from a clinical microbiome investigation of inflammatory bowel disease. This analysis finds that gut microbiota collected from Crohn’s disease patients are functionally distinct from gut microbiota collected from either ulcerative colitis patients or healthy controls, with differential abundance of metabolic pathways related to host-microbiome interactions that may serve as putative biomarkers of disease.Author Summary Microbial communities perform a wide variety of functions, from marine photosynthesis to aiding digestion in the human gut. Shotgun “metagenomic” sequencing can be used to sample millions of short DNA sequences from such communities directly, without needing to first culture its constituents in the laboratory. Using these data, researchers can survey which functions are encoded by mapping these short sequences to known protein families and pathways. Several tools for this annotation already exist. But, annotation is a multi-step process that includes identification of genes in a metagenome and determination of the type of protein each gene encodes. We currently know little about how different choices of parameters during annotation influences the final results. In this work, we systematically test how several key decisions affect the accuracy and speed of annotation, and based on these results, develop new software for annotation, which we named ShotMAP. We then use ShotMAP to functionally characterize marine communities and gut communities in a clinical cohort of inflammatory bowel disease. We find several functions are differentially represented in the gut microbiome of Crohn’s disease patients, which could be candidates for biomarkers and could also offer insight into the pathophysiology of Crohn’s. ShotMAP is freely available (https://github.com/sharpton/shotmap). ER -