RT Journal Article SR Electronic T1 Integrative analysis of RNA, translation and protein levels reveals distinct regulatory variation across humans JF bioRxiv FD Cold Spring Harbor Laboratory SP 018572 DO 10.1101/018572 A1 Can Cenik A1 Elif Sarinay Cenik A1 Gun W. Byeon A1 Fabian Grubert A1 Sophie I Candille A1 Damek Spacek A1 Bilal Alsallakh A1 Hagen Tilgner A1 Carlos L. Araya A1 Hua Tang A1 Emiliano Ricci A1 Michael P. Snyder YR 2015 UL http://biorxiv.org/content/early/2015/04/26/018572.abstract AB Elucidating the consequences of genetic differences between humans is essential for understanding phenotypic diversity and personalized medicine. Although variation in RNA levels, transcription factor binding and chromatin have been explored, little is known about global variation in translation and its genetic determinants. We used ribosome profiling, RNA sequencing, and mass spectrometry to perform an integrated analysis in lymphoblastoid cell lines from a diverse group of individuals. We find significant differences in RNA, translation, and protein levels suggesting diverse mechanisms of personalized gene expression control. Combined analysis of RNA expression and ribosome occupancy improves the identification of individual protein level differences. Finally, we identify genetic differences that specifically modulate ribosome occupancy - many of these differences lie close to start codons and upstream ORFs. Our results reveal a new level of gene expression variation among humans and indicate that genetic variants can cause changes in protein levels through effects on translation.