RT Journal Article SR Electronic T1 A Growing Microcolony can Survive and Support Persistent Propagation of Virulent Phages JF bioRxiv FD Cold Spring Harbor Laboratory SP 149062 DO 10.1101/149062 A1 Rasmus Skytte Eriksen A1 Sine Lo Svenningsen A1 Kim Sneppen A1 Namiko Mitarai YR 2017 UL http://biorxiv.org/content/early/2017/06/12/149062.abstract AB Bacteria form colonies and secrete extracellular polymeric substances that surround the individual cells. These spatial structures are often associated with collaboration and quorum sensing between the bacteria. Here we investigate the mutual protection provided by spherical growth of a monoclonal colony during exposure to phages that proliferate on its surface. As a proof of concept we exposed growing colonies of Escherichia coli to a virulent mutant of phage P1. When the colony consists of less than ~ 50000 members it is eliminated, while larger initial colonies allow long-term survival because the growth of bacteria throughout the spherical colony exceeds the killing of bacteria on the surface. A mathematical model pinpoints how this critical colony size depends on key parameters in the phage infection cycle. Surprisingly, we predict that a higher phage adsorption rate would allow substantially smaller colonies to survive a virulent phage.Significance Statement Bacteria are repeatedly exposed to an excess of phages, and carry evidence of this in terms of multiple defense mechanisms encoded in their genome. In addition to molecular mechanisms, bacteria may exploit the defense of spatial refuges. Here we demonstrate how bacteria can limit the impact of a virulent phage attack by growing as a colony which only exposes its surface to phages. We identify a critical size of the initial colony, below which the phages entirely eliminates the colony, and above which the colony continues to grow despite the presence of phages. Our study suggests that coexistence of phages and bacteria is strongly influenced by the spatial composition of microcolonies of susceptible bacteria.