RT Journal Article SR Electronic T1 Sex-associated autosomal DNA methylation differences are wide-spread and stable throughout childhood JF bioRxiv FD Cold Spring Harbor Laboratory SP 118265 DO 10.1101/118265 A1 Matthew Suderman A1 Andrew Simpkin A1 Gemma Sharp A1 Tom Gaunt A1 Oliver Lyttleton A1 Wendy McArdle A1 Susan Ring A1 George Davey Smith A1 Caroline Relton YR 2017 UL http://biorxiv.org/content/early/2017/03/19/118265.abstract AB Almost all species show sexual discordance in many traits and diseases. DNA methylation is known to contribute to these differences through well-established mechanisms including X-inactivation in females, imprinting and parent-of-origin effects. Here we investigate sex discordance in DNA methylation throughout childhood in a sample of 700 individuals from the Avon Longitudinal Study of Parents and Children. We show that autosomal sex-discordant methylation is widespread, affecting approximately 12,000 CpG sites at any given age, and stable; at least 8,500 sites are consistently different across all time points and a large proportion discordant in both the fetal and adult brain cortices. Just over 1,000 methylation differences change from birth to late adolescence, 90% of these between birth and around age seven. Sexually discordant CpG sites are enriched in genomic loci containing androgen but not estrogen targets and in genes involved in tissue development but not housekeeping functions. A methylation-derived sex score capturing the variance was calculated at each time point and found to be highly correlated between time points. This score is nominally associated with sex hormone levels in childhood as well as some phenotypes previously linked to sex hormone levels. These findings suggest that sex-discordant autosomal DNA methylation is widespread throughout the genome, likely due to the first androgen exposures in utero. It is then stably maintained from birth to late adolescence. Methylation variation at sex-discordant sites within the sexes, as summarized by the methylation sex score, likely reflects in utero androgen exposure which is relevant to human health.Significance Statement Although we know that sex hormones are critical for establishing sexual discordance, less is known about how this discordance is achieved and maintained. Here we present evidence for widespread differences in DNA methylation between male and female children. We show that most of these differences are established prenatally, likely due to the first androgen exposures in utero, and then stably maintained throughout childhood, despite extreme fluctuations in the levels of these very same hormones. Our results support a role for DNA methylation as a means for recording and maintaining the effects of exposure to sex hormones and thus to better understand sexual variation and how it is driven by the prenatal environment.