%0 Journal Article %A Rolf Fickentscher %A Matthias Weiss %T Assessment of asymmetric cell divisions in the early development of Caenorhabditis elegans %D 2017 %R 10.1101/109215 %J bioRxiv %P 109215 %X Asymmetric cell divisions are of fundamental importance for developmental processes, e.g. for the generation of founder cells. Prime examples are asymmetric cell divisions in the P lineage during early embryogenesis of the model organism Caenorhabditis elegans. However, due to a lack of quantitative data it has remained unclear how frequent unequal daughter cell sizes emerge in the nematode’s early embryogenesis, and whether these originate from sterical or biochemical cues. Using quantitative light-sheet microscopy, we have found that about 40% of all cell divisions in C. elegans until gastrulation generate daughter cells with significantly different volumes. Removing the embryo’s rigid eggshell revealed asymmetric divisions in somatic cells to be primarily induced by steric effects. Division asymmetries in the germline remained unaltered and were correctly reproduced by a model based on a cell-size independent, eccentric displacement of the metaphase plate. Our data suggest asymmetric cell divisions to be essential for establishing important cell-cell interactions that eventually fuel a successful embryogenesis.Summary statement About 40% of all cell divisions in early C. elegans embryogenesis are found to be asymmetric. A cell-size independent displacement of the mitotic spindle explains division asymmetries in the germline whereas the confining eggshell induces asymmetries of somatic cells. %U https://www.biorxiv.org/content/biorxiv/early/2017/02/16/109215.full.pdf