RT Journal Article SR Electronic T1 The Rosetta all-atom energy function for macromolecular modeling and design JF bioRxiv FD Cold Spring Harbor Laboratory SP 106054 DO 10.1101/106054 A1 Rebecca F. Alford A1 Andrew Leaver-Fay A1 Jeliazko R. Jeliazkov A1 Matthew J. O'Meara A1 Frank P. DiMaio A1 Hahnbeom Park A1 Maxim V. Shapovalov A1 P. Douglas Renfrew A1 Vikram K. Mulligan A1 Kalli Kappel A1 Jason W. Labonte A1 Michael S. Pacella A1 Richard Bonneau A1 Philip Bradley A1 Roland L. Dunbrack, Jr. A1 Rhiju Das A1 David Baker A1 Brian Kuhlman A1 Tanja Kortemme A1 Jeffrey J. Gray YR 2017 UL http://biorxiv.org/content/early/2017/02/07/106054.abstract AB Over the past decade, the Rosetta biomolecular modeling suite has informed diverse biological questions and engineering challenges ranging from interpretation of low-resolution structural data to design of nanomaterials, protein therapeutics, and vaccines. Central to Rosetta’s success is the energy function: amodel parameterized from small molecule and X-ray crystal structure data used to approximate the energy associated with each biomolecule conformation. This paper describes the mathematical models and physical concepts that underlie the latest Rosetta energy function, beta_nov15. Applying these concepts,we explain how to use Rosetta energies to identify and analyze the features of biomolecular models.Finally, we discuss the latest advances in the energy function that extend capabilities from soluble proteins to also include membrane proteins, peptides containing non-canonical amino acids, carbohydrates, nucleic acids, and other macromolecules.