RT Journal Article SR Electronic T1 Cannabinoid glycosides: In vitro production of a new class of cannabinoids with improved physicochemical properties JF bioRxiv FD Cold Spring Harbor Laboratory SP 104349 DO 10.1101/104349 A1 Janee’ M. Hardman A1 Robert T. Brooke A1 Brandon J. Zipp YR 2017 UL http://biorxiv.org/content/early/2017/01/30/104349.abstract AB The cannabinoid signaling system has recently garnered attention as a therapeutic target for numerous indications, and cannabinoids are now being pursued as new treatment options in diverse medical fields such as neurology, gastroenterology, pain management, and oncology. Cannabinoids are extremely hydrophobic and relatively unstable compounds, and as a result, formulation and delivery options are severely limited. Enzymatic glycosylation is a strategy to alter the physicochemical properties of small molecules, often improving their stability and aqueous solubility, as well as enabling site-specific drug targeting strategies. To determine if cannabinoids are a candidate for glycosylation, a library of glucosyltransferase (UGT) enzymes was screened for glycosylation activity towards various cannabinoids. The UGT76G1 enzyme from Stevia rebaudiana has been identified as having glucosyltransferase activity towards a broad range of cannabinoids. Compounds that were successfully glycosylated by UGT76G1 include the phytocannabinoids cannabidiol (CBD), Δ9-tetrahydrocannabinol (Δ9-THC), cannabidivarin (CBDV), and cannabinol (CBN), and the human endocannabinoids anandamide (AEA), 2-arachidonoyl-glycerol (2AG), 1-arachidonoyl-glycerol (1AG), and synaptamide (DHEA). Interestingly, UGT76G1 is able to transfer primary, secondary, and tertiary glycosylations at each acceptor of most of the cannabinoids tested. Additionally, Os03g0702000p, a glycosyltransferase from Oryza sativa, was able to transfer secondary glucose residues onto cannabinoid monoglycosides previously established by UGT76G1. This new class of cannabinoid-glycosides has been termed cannabosides. The compounds have greatly improved solubility in aqueous solutions. This increased aqueous solubility may enable new oral pharmaceutical delivery options for cannabinoids, as well as targeted delivery and release of cannabinoids within the intestines through glycoside prodrug metabolism.