TY - JOUR T1 - Chromatin Loops as Allosteric Modulators of Enhancer-Promoter Interactions JF - bioRxiv DO - 10.1101/003087 SP - 003087 AU - Boryana Doyle AU - Geoffrey Fudenberg AU - Maxim Imakaev AU - Leonid A. Mirny Y1 - 2014/01/01 UR - http://biorxiv.org/content/early/2014/11/24/003087.abstract N2 - The classic model of eukaryotic gene expression requires direct spatial contact between a distal enhancer and a proximal promoter. Recent Chromosome Conformation Capture (3C) studies show that enhancers and promoters are embedded in a complex network of looping interactions. Here we use a polymer model of chromatin fiber to investigate whether, and to what extent, looping interactions between elements in the vicinity of an enhancer-promoter pair can influence their contact frequency. Our equilibrium polymer simulations show that a chromatin loop, formed by elements flanking either an enhancer or a promoter, suppresses enhancer-promoter interactions, working as an insulator. A loop formed by elements located in the region between an enhancer and a promoter, on the contrary, facilitates their interactions. We find that different mechanisms underlie insulation and facilitation; insulation occurs due to steric exclusion by the loop, and is a global effect, while facilitation occurs due to an effective shortening of the enhancer-promoter genomic distance, and is a local effect. Consistently, we find that these effects manifest quite differently for in silico 3C and microscopy. Our results show that looping interactions that do not directly involve an enhancer-promoter pair can nevertheless significantly modulate their interactions. This phenomenon is analogous to allosteric regulation in proteins, where a conformational change triggered by binding of a regulatory molecule to one site affects the state of another site.Author Summary In eukaryotes, enhancers directly contact promoters over large genomic distances to regulate gene expression. Characterizing the principles underlying these long-range enhancer-promoter contacts is crucial for a full understanding of gene expression. Recent experimental mapping of chromosomal interactions by the Hi-C method shows an intricate network of local looping interactions surrounding enhancers and promoters. We model a region of chromatin fiber as a long polymer and study how the formation of loops between certain regulatory elements can insulate or facilitate enhancer-promoter interactions. We find 2-5 fold insulation or facilitation, depending on the location of looping elements relative to an enhancer-promoter pair. These effects originate from the polymer nature of chromatin, without requiring additional mechanisms beyond the formation of a chromatin loop. Our findings suggest that loop-mediated gene regulation by elements in the vicinity of an enhancer-promoter pair can be understood as an allosteric effect. This highlights the complex effects that local chromatin organization can have on gene regulation. ER -