RT Journal Article SR Electronic T1 Evaluation of Oxford Nanopore MinIONTM Sequencing for 16S rRNA Microbiome Characterization JF bioRxiv FD Cold Spring Harbor Laboratory SP 099960 DO 10.1101/099960 A1 Xiao Ma A1 Elyse Stachler A1 Kyle Bibby YR 2017 UL http://biorxiv.org/content/early/2017/01/29/099960.abstract AB In this manuscript we evaluate the potential for microbiome characterization by sequencing of near-full length 16S rRNA gene region fragments using the Oxford Nanopore MinION (hereafter ‘Nanopore’) sequencing platform. We analyzed pure-culture E. coli and P. fluorescens, as well as a low-diversity mixed community sample from hydraulic fracturing produced water. Both closed and open reference operational taxonomic unit (OTU) picking failed, necessitating the direct use of sequences without OTU picking. The Ribosomal Database Project classifier against the Green Genes database was found to be the optimal annotation approach, with average pure-culture annotation accuracies of 93.8% and 82.0% at the phyla and genus levels, respectively. Comparative analysis of an environmental sample using Nanopore and Illumina MiSeq sequencing identified high taxonomic similarity when using a weighted metric (Bray-Curtis), and significantly reduced similarity when using an unweighted metric (Jaccard). These results highlight the great potential of Nanopore sequencing to analyze broad microbial community trends, and the challenge of applying Nanopore sequencing to discern rare taxa in mixed microbial communities. Finally, we observed that between-run carryover following washes on the same flowcell accounted for >10% of sequence reads, necessitating future development to either prevent carryover or filter sequences of interest (e.g. barcoding).