TY - JOUR T1 - Opposing transcriptional mechanisms regulate <em>Toxoplasma</em> development JF - bioRxiv DO - 10.1101/094847 SP - 094847 AU - Dong-Pyo Hong AU - Joshua B. Radke AU - Michael W. White Y1 - 2016/01/01 UR - http://biorxiv.org/content/early/2016/12/16/094847.abstract N2 - The Toxoplasma biology that underlies human chronic infection is developmental conversion of the acute tachyzoite stage into the latent bradyzoite stage. We investigated the role of two alkaline-stress induced ApiAP2 transcription factors, AP2IV-3 and AP2IX-9, in bradyzoite development. These factors were expressed in two overlapping waves during bradyzoite development with AP2IX-9 increasing expression earlier than AP2IV-3, which peaked as AP2IX-9 expression was declining. Disruption of the AP2IX-9 gene enhanced, while deletion of AP2IV-3 gene decreased tissue cyst formation demonstrating these factors have opposite functions in bradyzoite development. Conversely, conditional overexpression of FKBP-modified of AP2IX-9 or AP2IV-3 with the small molecule Shield 1 had a reciprocal effect on tissue cyst formation confirming the conclusions of the knockout experiments. The AP2IX-9 repressor and AP2IV-3 activator tissue cyst phenotypes were borne out in gene expression studies that determined many of the same bradyzoite genes were regulated in an opposite manner by these transcription factors. A common gene target was the canonical bradyzoite marker, BAG1, and mechanistic experiments determined that like AP2IX-9, AP2IV-3 regulates a BAG1 promoter-luciferase reporter and specific binds the BAG1 promoter in parasite chromatin. Altogether, these results suggest the AP2IX-9 transcriptional repressor and AP2IV-3 transcriptional activator likely compete to control bradyzoite gene expression, which may permit Toxoplasma to better adapt to different tissue environments and select a suitable host cell for long term survival of the dormant tissue cyst.IMPORTANCE Toxoplasma infections are life-long due to the development of the bradyzoite tissue cyst, which is effectively invisible to the immune system. Despite the important clinical consequences of this developmental pathway, the molecular basis of the switch mechanisms that control formation of the tissue cyst is still poorly understood. Significant changes in gene expression are associated with tissue cyst development and ApiAP2 transcription factors are an important mechanism regulating this developmental transcriptome. However, the molecular composition of these ApiAP2 mechanisms are not well defined and the operating principles of ApiAP2 mechanisms are poorly understood. Here we establish that competing ApiAP2 transcriptional mechanisms operate to regulate this clinically important developmental pathway. ER -