RT Journal Article SR Electronic T1 CONTINUATION: Evaluation of adaptive somatic models in a gold standard whole genome somatic dataset JF bioRxiv FD Cold Spring Harbor Laboratory SP 093534 DO 10.1101/093534 A1 Fabien Campagne YR 2016 UL http://biorxiv.org/content/early/2016/12/13/093534.abstract AB In http://dx.doi.org/10.1101/079087, we presented adaptive models for calling somatic mutations in high-throughput sequencing data. These models were developed by training deep neural networks with semi-simulated data. In this continuation, I evaluate how such models can predict known somatic mutations in a real dataset. To address this question, I tested the approach using samples from the International Cancer Genome Consortium (ICGC) and the previously published ground-truth mutations (GoldSet). This evaluation revealed that training models with semi-simulation does produce models that exhibit strong performance in real datasets. I found a linear relationship between the performance observed on a semi-simulated validation set and independent ground-truth in the gold set (R2 = 0.952, P < 2−16). I also found that semi-simulation can be used to pre-train models before continuing training with true labels and that this pre-training improves model performance substantially on the real dataset compared to training models only with the real dataset. The best model pre-trained with semi-simulation achieved an AUC of 0.969 [0.957-0.982] (95% confidence interval) compared to 0.911 [0.890-0.932] when training with real labels only. These data demonstrate that semi-simulation can be a very effective approach to training filtering and ranking probabilistic models.