TY - JOUR T1 - Deep mutational scanning reveals characteristics important for targeting of the tail-anchored protein Fis1 JF - bioRxiv DO - 10.1101/045351 SP - 045351 AU - Abdurrahman Keskin AU - Emel Akdoğan AU - Cory D. Dunn Y1 - 2016/01/01 UR - http://biorxiv.org/content/early/2016/12/04/045351.abstract N2 - Proteins localized to mitochondria by a carboxyl-terminal tail anchor (TA) play roles in apoptosis, mitochondrial dynamics, and mitochondrial protein import. To reveal characteristics of TAs that may be important for mitochondrial targeting, we focused our attention upon the TA of the Saccharomyces cerevisiae Fis1 protein. Specifically, we generated a library of Fis1p TA variants fused to the Gal4 transcription factor, then, using next-generation sequencing, revealed which Fis1p TA mutations inhibited membrane insertion and allowed Gal4p activity in the nucleus. Prompted by our global analysis, we subsequently analyzed the ability of individual Fis1p TA mutants to localize to mitochondria. Our findings suggest that the membrane-associated domain of Fis1p TA may be bipartite in nature, and we encountered evidence that the positively charged patch at the carboxyl-terminus of Fis1p is required for both membrane insertion and organelle specificity. Furthermore, lengthening or shortening the Fis1 TA by up to three amino acids did not inhibit mitochondrial targeting, arguing against a model in which TA length directs insertion of TAs at specific organelles. Most importantly, positively charged residues were more acceptable at several positions within the membrane-associated domain of the Fis1p TA than negatively charged residues. These findings, emerging from the first high-resolution analysis of an organelle targeting sequence by deep mutational scanning, provide strong, in vivo evidence that lysine and arginine can “snorkel,” or become stably incorporated within a lipid bilayer by placing terminal charges of their side chains at the membrane interface.TAtail anchorOMouter membraneMADmembrane-anchoring domain3-AT3-aminotriazoleCHXcycloheximide ER -