RT Journal Article SR Electronic T1 Retrotransposon Activation Contributes to Neurodegeneration in a Drosophila TDP-43 Model of ALS JF bioRxiv FD Cold Spring Harbor Laboratory SP 090175 DO 10.1101/090175 A1 Lisa Krug A1 Nabanita Chatterjee A1 Rebeca Borges-Monroy A1 Stephen Hearn A1 Wen-Wei Liao A1 Kathleen Morrill A1 Lisa Prazak A1 Yung-Heng Chang A1 Richard M Keegan A1 Nikolay Rozhkov A1 Delphine Theodorou A1 Molly Hammell A1 Josh Dubnau YR 2016 UL http://biorxiv.org/content/early/2016/11/28/090175.abstract AB Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are two incurable neurodegenerative disorders that exist on a symptomological spectrum and share both genetic underpinnings and pathophysiological hallmarks. Functional abnormality of TAR DNA-binding protein 43 (TDP-43), an aggregation-prone RNA and DNA binding protein, is observed in the vast majority of both familial and sporadic ALS cases and in ∼40% of FTLD cases, but the cascade of events leading to cell death are not understood. We have expressed human TDP-43 (hTDP-43) in Drosophila neurons and glia, a model that recapitulates many of the characteristics of TDP-43-linked human disease including protein aggregation pathology, locomotor impairment, and premature death. We report that such expression of hTDP-43 impairs small interfering RNA (siRNA) silencing, which is the major post-transcriptional mechanism of retrotransposable element (RTE) control in somatic tissue. This is accompanied by de-repression of a panel of both LINE and LTR families of RTEs, with somewhat different elements being active in response to hTDP-43 expression in glia versus neurons. hTDP-43 expression in glia causes an early and severe loss of control of a specific RTE, the endogenous retrovirus (ERV) gypsy. We demonstrate that gypsy causes the degenerative phenotypes in these flies because we are able to rescue the toxicity of glial hTDP-43 either by genetically blocking expression of this RTE or by pharmacologically inhibiting RTE reverse transcriptase activity. Moreover, we provide evidence that activation of DNA damage-mediated programmed cell death underlies both neuronal and glial hTDP-43 toxicity, consistent with RTE-mediated effects in both cell types. Our findings suggest a novel mechanism in which RTE activity contributes to neurodegeneration in TDP-43-mediated diseases such as ALS and FTLD.AUTHOR SUMMARY Functional abnormality of TAR DNA-binding protein 43 (TDP-43), an aggregation-prone RNA and DNA binding protein, is observed in the vast majority of both familial and sporadic ALS cases and in ∼40% of FTLD cases, and mutations in TDP-43 are causal in a subset of familial ALS cases. Although cytoplasmic inclusions of this mostly nuclear protein are a hallmark of the disease, the cascade of events leading to cell death are not understood. We demonstrate that expression of human TDP-43 (hTDP-43) in Drosophila neurons or glial cells, which results in toxic cytoplasmic accumulation of TDP-43, causes broad expression of retrotransposons. In the case of glial hTDP-43 expression, the endogenous retrovirus (ERV) gypsy causally contributes to degeneration because inhibiting gypsy genetically or pharmacologically is sufficient to rescue the phenotypic effects. Moreover, we demonstrate that activation of DNA damage-mediated programmed cell death underlies hTDP-43 and gypsy mediated toxicity. Finally, we find that hTDP-43 pathology impairs small interfering RNA silencing, which is an essential system that normally protects the genome from RTEs. These findings suggest a novel mechanism in which a storm of retrotransposon activation drives neurodegeneration in TDP-43 mediated diseases such as ALS and FTLD.