TY - JOUR T1 - Host Vesicle Fusion Proteins VAPB, Rab11b and Rab18 Contribute to HSV-1 Infectivity by Facilitating Egress through the Nuclear Membrane JF - bioRxiv DO - 10.1101/088633 SP - 088633 AU - Natalia Saiz-Ros AU - Rafal Czapiewski AU - Andrew Stevenson AU - Ilaria Epifano AU - Selene K. Swanson AU - Marion McElwee AU - Swetha Vijayakrishnan AU - Christine A. Richardson AU - Charles Dixon AU - Lior Pytowski AU - Martin W. Goldberg AU - Laurence Florens AU - Sheila V. Graham AU - Eric C. Schirmer Y1 - 2016/01/01 UR - http://biorxiv.org/content/early/2016/11/19/088633.abstract N2 - The herpesvirus process of primary envelopment and de-envelopment as viral particles exit the nucleus has been for many years one of the least understood steps in the virus life cycle. Though viral proteins such as pUL31, pUL34, pUS3 and others are clearly important, these are likely insufficient for efficient fusion with the nuclear membrane. We postulated that host nuclear membrane proteins involved in virus nuclear egress would move from the inner to outer nuclear membranes due to membrane fusion events in primary envelopment and de-envelopment and then diffuse into the endoplasmic reticulum. Membrane fractions were prepared enriched in the nuclear envelope or the endoplasmic reticulum with and without HSV-1 infection and analyzed by mass spectrometry, revealing several vesicle fusion proteins as candidates in the viral nuclear egress pathway. Knockdown of three of these, VAPB, Rab11b, and Rab18, significantly reduced titers of released virus while yielding nuclear accumulation of encapsidated particles. Antibody staining revealed that VAPB visually accumulates in the inner nuclear membrane during HSV-1 infection. VAPB also co-localizes at early time points with the viral pUL34 protein known to be involved in nuclear egress. Most strikingly, VAPB was also observed on HSV-1 virus particles by immunogold labelling electron microscopy. Thus, these data reveal several new host cell vesicle fusion proteins involved in viral nuclear egress.Author Summary Human herpesviruses are associated with common human diseases such as chicken pox, shingles and mononucleosis and infect a wide range of animals making them economically important pathogens for livestock. Herpes simplex virus 1 (HSV-1) is most commonly associated with cold sores, but is also the leading cause of blindness by infection in the Western world. All herpesviruses share many aspects of infection. As large nuclear replicating dsDNA viruses with capsid sizes too large to use the nuclear pores to exit the nucleus, they have evolved a complex mechanism for envelopment and de-envelopment of primary herpesvirus particles, but this critical step in the virus lifecycle remains poorly understood. We have identified several host cell vesicle fusion proteins, VAPB, Rab11b and Rab18 that appear to contribute to this step in the HSV-1 life cycle. VAPB accumulates at the nuclear envelope with the HSV-1 pUL34 protein important for viral nuclear egress. Knockdown of any of these vesicle fusion proteins reduces viral titers, further arguing that they are important for nuclear egress. As there appears to be a specific subset of vesicle fusion proteins involved in viral egress, they could possibly represent novel targets for therapeutic interventions. ER -