TY - JOUR T1 - Ring attractor dynamics emerge from a spiking model of the entire protocerebral bridge JF - bioRxiv DO - 10.1101/081240 SP - 081240 AU - Kyobi S. Kakaria AU - Benjamin de Bivort Y1 - 2016/01/01 UR - http://biorxiv.org/content/early/2016/10/16/081240.abstract N2 - Animal navigation is accomplished by a combination of landmark-following and dead reckoning based on estimates of self motion. Both of these approaches require the encoding of heading information, which can be represented as an allocentric or egocentric azimuthal angle. Recently, Ca2+ correlates of landmark position and heading direction, in egocentric coordinates, were observed in the ellipsoid body (EB), a ring-shaped processing unit in the fly central complex (Seelig and Jayaraman, 2015). These correlates displayed key dynamics of so-called ring attractors, namely: 1) responsiveness to the position of external stimuli, 2) persistence in the absence of external stimuli, 3) locking onto a single external stimulus when presented with two competitors, 4) stochastically switching between competitors with low probability, and 5) sliding or jumping between positions when an external stimulus moves. We hypothesized that ring attractor-like activity in the EB arises from reciprocal neuronal connections to a related structure, the protocerebral bridge (PB). Using recent light-microscopy resolution catalogues of neuronal cell types in the PB (Wolff et al., 2015; Lin et al., 2013), we determined a connectivity matrix for the PB-EB circuit. When activity in this network was simulated using a leaky-integrate-and-fire model, we observed patterns of activity that closely resemble the reported Ca2+ phenomena. All qualitative ring attractor behaviors were recapitulated in our model, allowing us to predict failure modes of the PB ring attractor and the circuit dynamic phenotypes of thermogenetic or optogenetic manipulations. Ring attractor dynamics emerged under a wide variety of parameter configurations, even including non-spiking leaky-integrator implementations. This suggests that the ring-attractor computation is a robust output of this circuit, apparently arising from its high-level network properties (topological configuration, local excitation and long-range inhibition) rather than biological nitty gritty. ER -