PT - JOURNAL ARTICLE AU - Jenny Tung AU - Xiang Zhou AU - Susan C Alberts AU - Matthew Stephens AU - Yoav Gilad TI - The Genetic Architecture of Gene Expression Levels in Wild Baboons AID - 10.1101/008490 DP - 2014 Jan 01 TA - bioRxiv PG - 008490 4099 - http://biorxiv.org/content/early/2014/08/28/008490.short 4100 - http://biorxiv.org/content/early/2014/08/28/008490.full AB - Gene expression variation is well documented in human populations and its genetic architecture has been extensively explored. However, we still know little about the genetic architecture of gene expression variation in other species, particularly our closest living relatives, the nonhuman primates. To address this gap, we performed an RNA sequencing (RNA-seq)-based study of 63 wild baboons, members of the intensively studied Amboseli baboon population in Kenya. Our study design allowed us to measure gene expression levels and identify genetic variants using the same data set, enabling us to perform complementary mapping of putative cis-acting expression quantitative trait loci (eQTL) and measurements of allele-specific expression (ASE) levels. We discovered substantial evidence for genetic effects on gene expression levels in this population. Surprisingly, we found more power to detect individual eQTL in the baboons relative to a HapMap human data set of comparable size, probably as a result of greater genetic variation, enrichment of SNPs with high minor allele frequencies, and longer-range linkage disequilibrium in the baboons. eQTL were most likely to be identified for lineage-specific, rapidly evolving genes. Interestingly, genes with eQTL significantly overlapped between the baboon and human data sets, suggesting that some genes may tolerate more genetic perturbation than others, and that this property may be conserved across species. Finally, we used a Bayesian sparse linear mixed model to partition genetic, demographic, and early environmental contributions to variation in gene expression levels. We found a strong genetic contribution to gene expression levels for almost all genes, while individual demographic and environmental effects tended to be more modest. Together, our results establish the feasibility of eQTL mapping using RNA-seq data alone, and act as an important first step towards understanding the genetic architecture of gene expression variation in nonhuman primates.