PT - JOURNAL ARTICLE AU - Laura Bankers AU - Peter Fields AU - Kyle E. McElroy AU - Jeffrey L. Boore AU - John M. Logsdon, Jr. AU - Maurine Neiman TI - Genomic evidence for population-specific responses to coevolving parasites in a New Zealand freshwater snail AID - 10.1101/045674 DP - 2016 Jan 01 TA - bioRxiv PG - 045674 4099 - http://biorxiv.org/content/early/2016/09/12/045674.short 4100 - http://biorxiv.org/content/early/2016/09/12/045674.full AB - Reciprocal coevolving interactions between hosts and parasites are a primary source of strong selection that can promote rapid and often population- or genotype-specific evolutionary change. These host-parasite interactions are also a major source of disease. Despite their importance, very little is known about the genomic basis of coevolving host-parasite interactions in natural populations, especially in animals. Here, we use gene expression and sequence evolution approaches to take critical steps towards characterizing the genomic basis of interactions between the freshwater snail Potamopyrgus antipodarum and its coevolving sterilizing trematode parasite, Microphallus sp., a textbook example of natural coevolution. We found that Microphallus-infected P. antipodarum exhibit systematic downregulation of genes relative to uninfected P. antipodarum. The specific genes involved in parasite response differ markedly across lakes, consistent with a scenario where population-level coevolution is leading to population-specific host-parasite interactions and evolutionary trajectories. We also used an FST-based approach to identify a set of loci that represent promising candidates for targets of parasite-mediated selection across lakes as well as within each lake population. These results constitute the first genomic evidence for population-specific responses to coevolving infection in the P. antipodarum-Microphallus interaction and provide new insights into the genomic basis of coevolutionary interactions in nature.