RT Journal Article SR Electronic T1 Genetic loci associated with coronary artery disease harbor evidence of selection and antagonistic pleiotropy JF bioRxiv FD Cold Spring Harbor Laboratory SP 064758 DO 10.1101/064758 A1 Sean G. Byars A1 Qin Qin Huang A1 Lesley-Ann Gray A1 Samuli Ripatti A1 Gad Abraham A1 Stephen C. Stearns A1 Michael Inouye YR 2016 UL http://biorxiv.org/content/early/2016/08/28/064758.abstract AB Traditional genome-wide scans for positive selection have mainly uncovered selective sweeps associated with monogenic traits. While selection on quantitative traits is much more common, very few signals have been detected because of their polygenic nature. We searched for positive selection signals underlying coronary artery disease (CAD) in worldwide populations, using novel approaches to quantify relationships between polygenic selection signals and CAD genetic risk. We identified new candidate adaptive loci that appear to have been directly modified by disease pressures given their significant associations with CAD genetic risk. These candidates were all uniquely and consistently associated with many different male and female reproductive traits suggesting selection may have also targeted these because of their direct effects on fitness. This suggests the presence of widespread antagonistic-pleiotropic tradeoffs on CAD loci, which provides a novel explanation for the maintenance and high prevalence of CAD in modern humans. Lastly, we found that positive selection more often targeted CAD gene regulatory variants using HapMap3 lymphoblastoid cell lines, which further highlights the unique biological significance of candidate adaptive loci underlying CAD. Our study provides a novel approach for detecting selection on polygenic traits and evidence that modern human genomes have evolved in response to CAD-induced selection pressures and other early-life traits sharing pleiotropic links with CAD.Author Summary How genetic variation contributes to disease is complex, especially for those such as coronary artery disease (CAD) that develop over the lifetime of individuals. One of the fundamental questions about CAD — whose progression begins in young adults with arterial plaque accumulation leading to life-threatening outcomes later in life — is why natural selection has not removed or reduced this costly disease. It is the leading cause of death worldwide and has been present in human populations for thousands of years, implying considerable pressures that natural selection should have operated on. Our study provides new evidence that genes underlying CAD have recently been modified by natural selection and that these same genes uniquely and extensively contribute to human reproduction, which suggests that natural selection may have maintained genetic variation contributing to CAD because of its beneficial effects on fitness. This study provides novel evidence that CAD has been maintained in modern humans as a byproduct of the fitness advantages those genes provide early in human lifecycles.