TY - JOUR T1 - S2 from Equine infectious anemia virus is an infectivity factor which counteracts the retroviral inhibitors SERINC5 and SERINC3 JF - bioRxiv DO - 10.1101/065078 SP - 065078 AU - Ajit Chande AU - Cristiana Cuccurullo AU - Annachiara Rosa AU - Serena Ziglio AU - Susan Carpenter AU - Massimo Pizzato Y1 - 2016/01/01 UR - http://biorxiv.org/content/early/2016/07/21/065078.abstract N2 - The lentivirus equine infectious anemia virus (EIAV) encodes S2, a pathogenic determinant important for virus replication and disease progression in horses. No molecular function has yet been linked to this accessory protein. We now report that S2 can replace the activity of Nef on HIV-1 infectivity, being required to antagonize the inhibitory activity of SERINC proteins on Nef-defective HIV-1. Similar to Nef, S2 excludes SERINC5 from virus particles and requires an ExxxLL motif predicted to recruit the clathrin adaptor AP2. Accordingly, a functional endocytic machinery is essential for S2-mediated infectivity enhancement, which is impaired by inhibitors of clathrin-mediated endocytosis. In addition to retargeting SERINC5 to a late endosomal compartment, S2 promotes the host factor degradation. Emphasizing the similarity with Nef, we show that S2 is myristoylated and, compatible with a crucial role of the post-translational modification, its N-terminal glycine is required for the anti-SERINC5 activity.EIAV-derived vectors devoid of S2 are less susceptible than HIV-1 to the inhibitory effect of both human and equine SERINC5. We then identified the envelope glycoprotein of EIAV as a determinant which also modulates retrovirus susceptibility to SERINC5, indicating a bi-modular ability of the equine lentivirus to counteract the host factor.S2 shares no sequence homology with other retroviral factors known to counteract SERINC5. Adding to primate lentivirus Nef and gammaretrovirus glycoGag, the accessory protein from EIAV makes another example of a retroviral virulence determinant which independently evolved SERINC5-antagonizing activity. SERINC5 therefore plays a critical role for the interaction of the host with diverse retrovirus pathogens.Significance Statement SERINC5 and SERINC3 are recently discovered cellular inhibitors of retroviruses, which are incorporated into virus particles and impair their ability to propagate the infection to target cells. Only two groups of viruses (represented by HIV-1 and MLV) have so far been identified to have evolved the ability of counteracting SERINC inhibition. We now discovered that Equine infectious anemia virus, which causes a debilitating disease in horses, also acquired the ability to protect the virus particle from inhibition by SERINC5 and SERINC3, using its small protein S2. The evidence that three different retroviruses have independently evolved the ability to elude inhibition bySERINC5 and SERINC3 indicates that these cellular factors play a fundamental role against various retrovirus pathogens. ER -