PT - JOURNAL ARTICLE AU - Ching-Ho Chang AU - Amanda M. Larracuente TI - Structural changes following the reversal of a Y Chromosome to an autosome in <em>Drosophila pseudoobscura</em> AID - 10.1101/058412 DP - 2016 Jan 01 TA - bioRxiv PG - 058412 4099 - http://biorxiv.org/content/early/2016/06/11/058412.short 4100 - http://biorxiv.org/content/early/2016/06/11/058412.full AB - Robertsonian translocations resulting in fusions between sex chromosomes and autosomes shape karyotype evolution in animals by creating new sex chromosomes from autosomes. These translocations can also reverse sex chromosomes back into autosomes, which is especially intriguing given that autosomes and sex chromosomes differ in gene regulation and chromatin environment. While researchers are beginning to understand X chromosomes reversals to autosomes at a genomic level, it is difficult to study reversals of Y chromosomes because of their rapid sequence turnover and high repeat content. To gain insight into the genomic events following a Y chromosome reversal, we investigated an autosome-Y translocation in a well-studied and tractable organism, Drosophila pseudoobscura. About 10-15 Mya, the ancestral Y chromosome fused to a small autosome (the dot chromosome) in an ancestor of D. pseudoobscura. We used single molecule real-time sequencing reads to assemble the genic part of the D. pseudoobscura dot chromosome, including this Y-to-dot translocation. We find that the intervening sequence between the ancestral Y and the rest of the dot chromosome is only ~78 Kb and has a low repeat density, suggesting that the centromere now falls outside, rather than between, the fused chromosomes. The Y-to-dot region is 100 times smaller than the D. melanogaster Y chromosome, owing to repeat landscape changes. Previous studies suggest that recurrent selective sweeps favoring shorter introns helped to shrink the Y-to-dot following the translocation. Our results suggest that genetic drift and a small ancestral Y chromosome may also help explain the compact size of the Y-to-dot translocation.