TY - JOUR T1 - Nonsinusoidal oscillations underlie pathological phase-amplitude coupling in the motor cortex in Parkinson’s disease JF - bioRxiv DO - 10.1101/049304 SP - 049304 AU - Scott R. Cole AU - Erik J. Peterson AU - Roemer van der Meij AU - Coralie de Hemptinne AU - Philip A. Starr AU - Bradley Voytek Y1 - 2016/01/01 UR - http://biorxiv.org/content/early/2016/04/19/049304.abstract N2 - Parkinson’s disease (PD) is associated with abnormal beta oscillations (13-30 Hz) in the basal ganglia and motor cortex (M1). Recent reports show that M1 beta-high gamma (50-200 Hz) phase-amplitude coupling (PAC) is exaggerated in PD and is reduced following acute deep brain stimulation (DBS). Here we analyze invasive M1 electrocorticography recordings in PD patients on and off DBS, and in isolated cervical dystonia patients, and show that M1 beta oscillations are nonsinusoidal, having sharp and asymmetric features. These sharp oscillatory beta features underlie the previously reported PAC, providing an alternative to the standard interpretation of PAC as an interaction between two distinct frequency components. Specifically, the ratio between peak and trough sharpness is nearly perfectly correlated with beta-high gamma PAC (r = 0.96) and predicts PD-related motor deficit. Using a simulation of the local field potential, we demonstrate that sharp oscillatory waves can arise from synchronous synaptic activity. We propose that exaggerated beta-high gamma PAC may actually reflect such synchronous synaptic activity, manifesting as sharp beta oscillations that are “smoothed out” with DBS. These results support the “desynchronization” hypothesis of DBS wherein DBS counteracts pathological synchronization throughout the basal ganglia-thalamocortical loop. We argue that PAC can be influenced by more than one mechanism. In this case synaptic synchrony, rather than the often assumed spike-field coherence, may underlie exaggerated PAC. These often overlooked temporal features of the oscillatory waveform carry critical physiological information about neural processes and dynamics that may lead to better understanding of underlying neuropathology. ER -