TY - JOUR T1 - Differences in sensitivity to EGFR inhibitors could be explained by described biochemical differences between oncogenic Ras mutants JF - bioRxiv DO - 10.1101/005397 SP - 005397 AU - Edward C. Stites Y1 - 2014/01/01 UR - http://biorxiv.org/content/early/2014/05/21/005397.abstract N2 - Emerging data suggest different activating Ras mutants may have different biological behaviors. The most striking example may be in colon cancer, where activating KRAS mutations generally indicate a lack of benefit to treatment with EGFR inhibitors, although the activating KRAS G13D mutation appears to be an exception. As KRAS G13D generally shares the same biochemical defects as the other oncogenic KRAS mutants, a mechanism for differential sensitivity is not apparent. Here, a previously developed mathematical model of Ras mutant signaling is used to investigate this problem. The purpose of the analysis is to determine whether differential response is consistent with known mechanisms of Ras signaling, and to determine if any known features of Ras mutants provide an explanation for differential sensitivity. Computational analysis of the mathematical model finds that differential response to upstream inhibition between cancers with different Ras mutants is indeed consistent with known mechanisms of Ras biology. Moreover, model analysis demonstrates that the subtle biochemical differences between G13D and G12D (and G12V) mutants are sufficient to enable differential response to upstream inhibition. Simulations suggest that wild-type Ras within the G13D mutant context is more effectively inhibited by upstream inhibitors than when it is in the G12D or G12V contexts. This difference is a consequence of an elevated Km for the G13D mutant. The identification of a single parameter that influences sensitivity is significant in that it suggests an approach to evaluate other, less common, Ras mutations for their anticipated response to upstream inhibition. ER -