TY - JOUR T1 - Allosteric inhibition of Aurora-A kinase by a synthetic V<sub>NAR</sub> nanobody JF - bioRxiv DO - 10.1101/046730 SP - 046730 AU - Selena G. Burgess AU - Arkadiusz Oleksy AU - Tommaso Cavazza AU - Mark W. Richards AU - Isabelle Vernos AU - David Matthews AU - Richard Bayliss Y1 - 2016/01/01 UR - http://biorxiv.org/content/early/2016/04/02/046730.abstract N2 - The vast majority of clinically-approved protein kinase inhibitors target the ATP binding pocket directly. Consequently, many inhibitors have broad selectivity profiles and most have significant off-target effects. Allosteric inhibitors are generally more selective, but are difficult to identify because allosteric binding sites are often unknown or poorly characterized, and there is no clearly preferred approach to generating hit matter. Aurora-A is activated through binding of TPX2 to an allosteric site on the kinase catalytic domain, and this knowledge could be exploited to generate an inhibitor. However, it is currently unclear how to design such a compound because a small molecule or peptide mimetic of TPX2 would be expected to activate, not inhibit the kinase. Here, we generated an allosteric inhibitor of Aurora-A kinase based on a synthetic, VNAR single domain nanobody scaffold, IgNARV-D01. Biochemical studies and a crystal structure of the Aurora-A/IgNARV-D01 complex show that the nanobody overlaps with the TPX2 binding site. In contrast with the binding of TPX2, which stabilizes an active conformation of the kinase, binding of the nanobody stabilizes an inactive conformation, in which the αC-helix is distorted, the canonical Lys-Glu salt bridge is broken, and the regulatory (R-) spine is disrupted by an additional hydrophobic side chain from the activation loop. These studies illustrate how nanobodies can be used to characterize the regulatory mechanisms of kinases and provide a rational basis for structure-guided design of allosteric Aurora-A kinase inhibitors.Significance Protein kinases are commonly dysregulated in cancer and inhibitors of protein kinases are key therapeutic drugs. However, this strategy is often undermined by a lack of selectivity since the ATP binding pocket that kinase inhibitors usually target is highly conserved. Inhibitors that target allosteric sites are more selective but more difficult to generate. Here we identify a single domain antibody (nanobody) to target an allosteric pocket on the catalytic domain of Aurora-A kinase and demonstrate that the mechanism is antagonistic to a physiologically-relevant allosteric activator, TPX2. This work will enable the development of allosteric Aurora-A inhibitors as potential therapeutics, and provide a model for the development of tools to investigate allosteric modes of kinase inhibition. ER -