%0 Journal Article %A Samir Suweis %A Filippo Simini %A Jayanth R. Banavar %A Amos Maritan %T Emergence of structural and dynamical properties of ecological mutualistic networks %D 2014 %R 10.1101/001818 %J bioRxiv %P 001818 %X Mutualistic networks are formed when the interactions between two classes of species are mutually beneficial. They are important examples of cooperation shaped by evolution. Mutualism between animals and plants plays a key role in the organization of ecological communities1-3. Such networks in ecology have generically evolved a nested architecture4,5 independent of species composition and latitude6,7 - specialists interact with proper subsets of the nodes with whom generalists interact1. Despite sustained efforts5,8,9,10 to explain observed network structure on the basis of community-level stability or persistence, such correlative studies have reached minimal consensus11,12,13. Here we demonstrate that nested interaction networks could emerge as a consequence of an optimization principle aimed at maximizing the species abundance in mutualistic communities. Using analytical and numerical approaches, we show that because of the mutualistic interactions, an increase in abundance of a given species results in a corresponding increase in the total number of individuals in the community, as also the nestedness of the interaction matrix. Indeed, the species abundances and the nestedness of the interaction matrix are correlated by an amount that depends on the strength of the mutualistic interactions. Nestedness and the observed spontaneous emergence of generalist and specialist species occur for several dynamical implementations of the variational principle under stationary conditions. Optimized networks, while remaining stable, tend to be less resilient than their counterparts with randomly assigned interactions. In particular, we analytically show that the abundance of the rarest species is directly linked to the resilience of the community. Our work provides a unifying framework for studying the emergent structural and dynamical properties of ecological mutualistic networks2,5,10,14. %U https://www.biorxiv.org/content/biorxiv/early/2014/01/14/001818.full.pdf