PT - JOURNAL ARTICLE AU - Steven G Kuntz AU - Michael B. Eisen TI - <em>Drosophila</em> embryogenesis scales uniformly across temperature and developmentally diverse species AID - 10.1101/000307 DP - 2013 Jan 01 TA - bioRxiv PG - 000307 4099 - http://biorxiv.org/content/early/2013/11/11/000307.short 4100 - http://biorxiv.org/content/early/2013/11/11/000307.full AB - Temperature affects both the timing and outcome of animal development, but the detailed effects of temperature on the progress of early development have been poorly characterized. To determine the impact of temperature on the order and timing of events during Drosophila melanogaster embryogenesis, we used time-lapse imaging to track the progress of embryos from shortly after egg laying through hatching at seven precisely maintained temperatures between 17.5°C and 32.5°C. We employed a combination of automated and manual annotation to determine when 36 milestones occurred in each embryo. D. melanogaster embryogenesis takes 33 hours at 17.5°C, and accelerates with increasing temperature to a low of 16 hours at 27.5°C, above which embryogenesis slows slightly. Remarkably, while the total time of embryogenesis varies over two fold, the relative timing of events from cellularization through hatching is constant across temperatures. To further explore the relationship between temperature and embryogenesis, we expanded our analysis to cover ten additional Drosophila species of varying climatic origins. Six of these species, like D. melanogaster, are of tropical origin, and embryogenesis time at different temperatures was similar for them all. D. mojavensis, a sub-tropical fly, develops slower than the tropical species at lower temperatures, while D. virilis, a temperate fly, exhibits slower development at all temperatures. The alpine sister species D. persimilis and D. pseudoobscura develop as rapidly as tropical flies at cooler temperatures, but exhibit diminished acceleration above 22.5°C and have drastically slowed development by 30°C. Despite ranging from 13 hours for D. erecta at 30°C to 46 hours for D. virilis at 17.5°C, the relative timing of events from cellularization through hatching is constant across all of the species and temperatures examined here, suggesting the existence of a previously unrecognized timer controlling the progress of embryogenesis that has been tuned by natural selection in response to the thermal environment in which each species lives.Author Summary Temperature profoundly impacts the rate of development of “cold-blooded” animals, which proceeds far faster when it is warm. There is, however, no universal relationship. Closely related species can develop at markedly different speeds at the same temperature, likely resulting from environmental adaptation. This creates a major challenge when comparing development among species, as it is unclear whether they should be compared at the same temperature or under different conditions to maintain the same developmental rate. Facing this challenge while working with flies (Drosophila species), we found there was little data to inform this decision. So, using time-lapse imaging, precise temperature-control, and computational and manual video-analysis, we tracked the complex process of embryogenesis in 11 species at seven different temperatures. There was over a three-fold difference in developmental rate between the fastest species at its fastest temperature and the slowest species at its slowest temperature. However, our finding that the timing of events within development all scaled uniformly across species and temperatures astonished us. This is good news for developmental biologists, since we can induce species to develop nearly identically by growing them at different temperatures. But it also means flies must possess some unknown clock-like molecular mechanism driving embryogenesis forward.