TY - JOUR T1 - Some plants don’t play games: An ideal free distribution explains the root production of plants that do not engage in a tragedy of the commons game JF - bioRxiv DO - 10.1101/004820 SP - 004820 AU - Gordon G. McNickle AU - Joel S. Brown Y1 - 2014/01/01 UR - http://biorxiv.org/content/early/2014/05/07/004820.abstract N2 - This is the pre-peer-reviewed version of the following article: G.G. McNickle and J.S. Brown. (2014) An ideal free distribution explains the root production of plants that do not engage in a tragedy of the commons game. Journal of Ecology. DOI: 10.1111/1365-2745.12259, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1111/1365-2745.12259/abstractGame theoretic models that seek to predict the most competitive strategy plants use for competition in soil are clear; they generally predict that over-proliferation of roots is the only evolutionarily stable strategy. However, empirical studies are equally clear that not all plants employ this strategy of over-proliferation of roots. Here, our goal was to develop and test an alternative non-game theoretic model that can be used to develop alternative hypotheses for plants that do not appear to play games.The model is similar to previous models, but does not use a game theoretic optimization criterion. Instead, plants use only nutrient availability to select a root allocation strategy, ignoring neighbours. To test the model we compare root allocation and seed yield of plants grown either alone or with neighbours.The model predicted plants that do not sense neighbours (or ignore neighbours) should allocate roots relative to resource availability following an ideal free distribution. This means that if a soil volume of quality R contains x roots, then a soil volume of quality R/n will contain x/n roots. The experimental data were consistent with this prediction. That is, plants grown with 1.2g of slow release fertilizer resources produced 0.043 g of roots, while plants grown with neighbours, or plants grown with half as much fertilizer produced half as much root mass (0.026g, and 0.24g respectively). Seed yield followed a similar pattern.This model presents an alternative predictive framework for those plant species that do not seem to play a tragedy of the commons game for belowground competition.Synthesis: It remains unclear why some plants do not engage in belowground games for competition. Models suggest over-proliferation is an unbeatable evolutionary stable strategy, yet plants that do not play the game apparently coexist with plants that do. We suggest that a greater understanding of trade-offs among traits that are important for other biotic interactions (above-ground competition, enemy defence, mutualisms) will lead to a greater understanding of why some species over-proliferate roots when in competition but other species do not. ER -