PT - JOURNAL ARTICLE AU - Andrew H. Van Benschoten AU - Lin Liu AU - Ana Gonzalez AU - Aaron S. Brewster AU - Nicholas K. Sauter AU - James S. Fraser AU - Michael E. Wall TI - Measuring and modeling diffuse scattering in protein X-ray crystallography AID - 10.1101/033746 DP - 2016 Jan 01 TA - bioRxiv PG - 033746 4099 - http://biorxiv.org/content/early/2016/02/01/033746.short 4100 - http://biorxiv.org/content/early/2016/02/01/033746.full AB - X-ray diffraction has the potential to provide rich information about the structural dynamics of macromolecules. To realize this potential, both Bragg scattering, which is currently used to derive macromolecular structures, and diffuse scattering, which reports on correlations in charge density variations must be measured. Until now measurement of diffuse scattering from protein crystals has been scarce, due to the extra effort of collecting diffuse data. Here, we present three-dimensional measurements of diffuse intensity collected from crystals of the enzymes cyclophilin A and trypsin. The measurements were obtained from the same X-ray diffraction images as the Bragg data, using best practices for standard data collection. To model the underlying dynamics in a practical way that could be used during structure refinement, we tested Translation-Libration-Screw (TLS), Liquid-Like Motions (LLM), and coarse-grained Normal Modes (NM) models of protein motions. The LLM model provides a global picture of motions and were refined against the diffuse data, while the TLS and NM models provide more detailed and distinct descriptions of atom displacements, and only used information from the Bragg data. Whereas different TLS groupings yielded similar Bragg intensities, they yielded different diffuse intensities, none of which agreed well with the data. In contrast, both the LLM and NM models agreed substantially with the diffuse data. These results demonstrate a realistic path to increase the number of diffuse datasets available to the wider biosciences community and indicate that NM-based refinement can generate dynamics-inspired structural models that simultaneously agree with both Bragg and diffuse scattering.Significance The structural details of protein motions are critical to understanding many biological processes, but they are often hidden to conventional biophysical techniques. Diffuse X-ray scattering can reveal details of the correlated movements between atoms; however, the data collection historically has required extra effort and dedicated experimental protocols. We have measured three-dimensional diffuse intensities in X-ray diffraction from CypA and trypsin crystals using standard crystallographic data collection techniques. Analysis of the resulting data is consistent with the protein motions resembling diffusion in a liquid or vibrations of a soft solid. Our results show that using diffuse scattering to model protein motions can become a component of routine crystallographic analysis through the extension of commonplace methods.