RT Journal Article SR Electronic T1 Evolutionary stability of jointly evolving traits in subdivided populations JF bioRxiv FD Cold Spring Harbor Laboratory SP 037887 DO 10.1101/037887 A1 Charles Mullon A1 Laurent Keller A1 Laurent Lehmann YR 2016 UL http://biorxiv.org/content/early/2016/01/28/037887.abstract AB The evolutionary stability of quantitative traits depends on whether a population can resist invasion by any mutant. While uninvadability is well understood in well-mixed populations, it is much less so in subdivided populations when multiple traits evolve jointly. Here, we investigate whether a spatially subdivided population at a monomorphic equilibrium for multiple traits can withstand invasion by any mutant, or is subject to diversifying selection. Our model also explores the among traits correlations arising from diversifying selection and how they depend on relatedness due to limited dispersal. We find that selection favours a positive (negative) correlation between two traits, when the selective effects of one trait on relatedness is positively (negatively) correlated to the indirect fitness effects of the other trait. We study the evolution of traits for which this matters: dispersal that decreases relatedness, and helping that has positive indirect fitness effects. We find that when dispersal cost is low and the benefits of helping accelerate faster than its costs, selection leads to the coexistence of mobile defectors and sessile helpers. Otherwise, the population evolves to a monomorphic state with intermediate helping and dispersal. Overall, our results highlight the importance of population subdivision for evolutionary stability and correlations among traits.