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Abstract 

Alignment-free (AF) methods have recently been adopted to infer phylogenetic trees. However, the 

evolutionary relationships among microbes, impacted by common phenomena such as lateral genetic 

transfer and rearrangement, cannot be adequately captured in a strictly tree-like structure. Bacterial 

and archaeal genomes consist of highly conserved regions, e.g. ribosomal RNA genes (commonly 

used as phylogenetic markers), more-variable regions and extrachromosomal elements, i.e. plasmids 

(that contain genes critical under a selective condition e.g. antibiotic resistance). The impact of these 

elements on genome-scale inference of microbial phylogeny remains little known. Here, using an AF 

approach, we inferred phylogenomic networks of microbial life based on 2785 completely sequenced 

bacterial and archaeal genomes, and systematically assessed the impact of ribosomal RNA genes and 

plasmid sequences in this network. Our results indicate that k-mer similarity can correlate with 

taxonomic rank of microbes. Using a relational database approach, we linked the implicated k-mers to 
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annotated genomic regions (thus functions), and defined core functions in specific phyletic groups and 

genera. We found that, in most phyla, highly conserved functions are often related to Amino acid 

metabolism and transport, and Energy production and conversion. Our findings indicate that AF 

phylogenomics can be used to infer reticulate relationships in a scalable manner and provide new 

perspective into microbial biology and evolution. 

 

Introduction 

Genome evolution in microbes involves highly dynamic molecular mechanisms including genome 

rearrangement and lateral genetic transfer (LGT). These mechanisms may violate the implicit 

assumption of full-length contiguity in multiple sequence alignment (MSA), a common step in 

phylogenetic analysis. Furthermore, MSA-based approaches necessitate heuristic methods e.g. 

Bayesian inference in reconstructing phylogenies, which are not scalable to the quantity of existing 

and forthcoming genome data1,2. An alternative strategy is to infer evolutionary relatedness based on 

shared subsequences of fixed length, known as k-mers, i.e. alignment-free (AF) methods3. AF 

approaches provide exact solutions (i.e. pairwise distances between genomes based on shared k-mers) 

which can be directly used in deriving a phylogenomic network4.  

In the past decades, AF approaches have been used in phylogenomics to infer phylogenetic trees of 

evolving sequences2, complete genomes5-7 and NGS data8. The AF approaches used in phylogenomics 

can be classified into two categories3, one based on the count of k-mers9,10 and the other based on 

match lengths11,12. Methods in both categories have been shown to be scalable and accurate in 

inferring phylogenies at both gene and genome level2,10 while being robust to complex evolutionary 

event such as LGT or rearrangement7. 

However, the evolution of microbial genomes is known to not follow a tree-like structure, notably 

because of widely spread LGT events13,14, and a network structure to represent phylogenies has been 

increasingly chosen over a traditional tree representation since the emergence of genome data15. 

Different types of phylogenetic networks have been developed to increase our understanding of 

microbial evolution, including genome networks15 and sequence-similarity networks16. These 
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networks, by allowing more than one connection per node, i.e. sequences or genomes, can be used to 

visualise vertical phylogenetic signal, from an inferred (but un-observed) common ancestor to 

organisms, and lateral signal between organisms. But the phylogenetic signal used to build these 

networks is generally inferred using BLAST hits17 and, therefore, based on sequence alignment. 

As a proof of concept, we previously generated an AF phylogenetic network for 143 bacterial and 

archaeal genomes18, using pairwise distances based on the !"# statistic. By varying similarity 

thresholds in displaying the network, we could easily capture changes in the network structure, e.g. 

cliques, which reflect evolutionary events and dynamics of microbial genomes. For instance, we 

recovered the progressive separation of the different genomic lineages throughout their evolution18 

and showcased particular relationships between isolates not observed using a classical tree structure7. 

Highly conserved regions such as rRNA genes have long been used as phylogenetic markers for the 

inference of trees, and indeed our current view of the Tree of Life is based on ribosomal proteins19. 

However, trees based solely on this or other markers represent only a small fraction of the total 

genomic information20. On the other hand, variable regions or exogenous genetic material, i.e. 

plasmid genomes, are rarely taken into account when inferring phylogenies. Plasmids genomes are 

known to be important agents of LGT in microbes21,22 as well as a common vector of antibiotic 

resistance23, and a better understanding of their contribution to microbial evolution is an urgent matter 

due to the widespread of antibiotic resistance24. The AF approaches allows for the comparison of 

whole genomes, including exogenous sequences, with good computational performance but they do 

not keep information related to the k-mers locations3,7. Without positional information, the 

contribution of specific regions, such as rRNA genes or those having arisen from exogenous genetic 

material, to the phylogenetic signal captured by AF methods remains difficult to assess.  

Here, to investigate the impact of plasmids and highly conserved genes in phylogenomic inference, 

using 2785 complete bacterial genomes we inferred AF phylogenomic networks using (a) all genome 

data including plasmids, (b) chromosomal sequences without ribosomal RNA genes, (c) only 

ribosomal RNA genes and (d) only plasmid sequences. We systematically assessed the impact of 

rRNA genes and plasmids on the overall microbial phylogenomic network. Using an advanced 
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database approach, we investigated the core functions that are specific to particular phyletic groups or 

genera based on the shared k-mers.  

 

Results 

To infer a phylogenomic network, we first calculated a pairwise distance d between each genome 

based on the !"# distance using 25-mers (see Methods). For each pair of genomes a and b we 

transformed $%& into a similarity value '%& and generated a similarity network, following our earlier 

approach18; we consider this network to depict phylogenetic relatedness among these genomes, i.e. to 

be a phylogenomic network. Here we define a threshold t for which only edges with ' ≥ ) are 

considered in the network. To compare our results at the genome and phylum levels, we generated I-

networks in which a node represents a distinct genome isolate and an edge between two nodes 

(isolates) indicates evidence of shared k-mers, and P-networks in which a node represents a distinct 

phylum and an edge represents the number of isolates that share k-mers with isolates of another 

phylum (see Methods). We then compared the k-mer networks based on the topological differences 

between them at different t. All the I- and P-networks of these 2705 genome isolates are available at 

http://espace.library.uq.edu.au/view/UQ:54303725. 

 

AF networks of microbial evolution 

To infer a phylogenomic network of prokaryotes, we used a dataset of 2785 completely sequenced 

microbial genomes (2619 Bacteria, 176 Archaea) as of 31 January 2016 (Supplementary Table S1). 

To eliminate redundancy among the data, we kept only one genome where an identical genome (from 

another isolate) was present (!"# distance = 0). We also removed genomes with little evidence of 

shared k-mers (!"# distance > 10); these genomes share ≤ 0.01% of 25-mers with any other genomes 

(i.e. there is little evidence of homology). Following this filtering step, we took a total of 2705 

genomes forward into subsequent analyses. For each network, we systematically assessed the number 

of connected nodes (c), number of edges (e), maximum clique size (z) and maximum number of 
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cliques (n) across varying levels of the similarity-score threshold t. Here we required a clique to 

contain three or more edges, and we defined E as the average number of edges per node. 

The network topology changes substantially with similarity threshold: at t = 0, c = 2705, e = 3835070 

and z = 2700, compared to c = 1358, e = 9898 and z = 48 at t = 9 (Supplementary Table S2). As we 

required more-stringent threshold of shared similarity, the network became less-connected, and 

distinct cliques corresponding to diverse taxa (i.e. phyla, classes, genera) started to form. For 

example, Bacteria and Archaea form distinct cliques at t = 4, most phyla can be identified as distinct 

cliques or paracliques at t = 5, and all proteobacterial classes are separate from each other at t > 5. 

The I-network is very densely connected at t = 0, with the maximum number of cliques n = 10. The 

value n is too high to be computed at t =1 or t = 2, but is 1662785 at t = 3 and decreases to 232 at t = 9 

(Supplementary Table S2). Most isolates are members of a single large clique at t = 0 and t = 1, in 

which E > 1400; at t = 2, E = 736.3. The network becomes less dense at t = 3, with E = 112.8 

(Supplementary Table S2). As this network of 2705 nodes remains too densely connected to be 

visualised and analysed directly, we generated the P-network using the same data, with each node 

representing a phylum. Figure 1 shows the P-network of the 2705 genomes at t = 3. The thickness of 

each edge represents the number of instances in which any two genomes (one for each phyla 

connected by the edge) have a similarity value ' ≥ ). Major phyla (e.g. β- and γ-Proteobacteria, 

Firmicutes, Actinobacteria and Tenericutes) are clearly separated at t = 3. The thickest edge (in 

yellow) is between the β-Proteobacteria and γ-Proteobacteria, suggesting a high similarity among 

genomes between these groups. In addition, we also observed a large extent of shared 25-mers 

between Firmicutes and any of the proteobacterial classes. 

 

Impact of rRNA genes 

To determine the contribution of the highly conserved rRNA genes to our AF networks, we computed 

AF networks using 2616 genomes (a subset of the 2705 above) upon excluding all rRNA gene 

sequences, and genomes with no annotated information (see Methods). The I-network of the genomes 
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from which rRNA genes have been removed has a lower density than the one inferred using the whole 

dataset. Similarly to the previous I-network, here at t = 0, c = 2615, e = 1720082 and z = 1226, and 

these values decreased to c = 1290, e = 9008 and z = 47 at t = 9 (Supplementary Table S3). At t = 3, 

the I-network of the rRNA gene-free network has 38.9 edges per node on average, about 2.9-fold 

fewer than the 112.8 edges per node in the whole-genome network (Supplementary Table S2). Figure 

2 shows the P-network of these 2616 genomes at t = 3. As in Figure 1, the thickest edge (in yellow), 

between β- and γ-Proteobacteria (Figure 2), indicates the largest number of instances of shared k-mers 

between genomes from these two groups. This P-network is less dense than the equivalent network 

based on the whole data (shown in Figure 1). Although we observed fewer connections between the 

phyla after removal of rRNA sequences from the genome data, many of the major connections 

observed in Figure 1 remain, e.g. between β- and γ-Proteobacteria, and between Actinobacteria and γ-

Proteobacteria. Thus the sharing of 25-mers contributing to these major connections extends beyond 

the commonly used phylogenetic marker of rRNA genes. 

A network computed using only the rRNA genes sequences (see Methods) was denser than the two 

corresponding I-networks above. At t = 6, E is high at 854.4 (z = 1321; Supplementary Table S4), 

compared to 10.4 (z = 82) and 9.6 (z = 74) in the I-networks based on whole-genome and rRNA gene-

removed data respectively. Supplementary Figure S1 shows the P-network of 2616 genome isolates 

based solely on rRNA genes at t = 6. Although most phyla are connected to each other (i.e. 2613 

connected nodes and z = 1321 at t = 6), we observed a clear separation between Archaea and Bacteria. 

These results suggest that rRNA genes can be used to infer a phylogeny that distinguishes Archaea 

from Bacteria, but these sequences do not provide sufficient resolution of various Bacteria phyla. 

 

Evolution of plasmid genomes 

To compare the evolutionary histories of extrachromosomal plasmids against those of whole 

genomes, we computed I- and P-networks using plasmid-only genome data for 921 isolates from 26 

phyla (see Methods). Figure 3 shows the I-network of the 921 plasmid genomes at t = 0, in which E = 

14.3 (c = 745, e = 10679 and z = 48; Supplementary Table S5). Most phyla appear as distinct cliques, 
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but notably with edges between the Actinobacteria, Firmicutes and the different classes of 

Proteobacteria. At t = 4 most phyla are separated as distinct cliques, with the exception of ε-

Proteobacteria and Firmicutes; the other Proteobacteria (α, β, δ and γ) are in a distinct paraclique. The 

Euryarchaeota, connected only to the bacterial phylum of Planctomycetes at t = 0, is separated from 

Bacteria at t ≥ 1. All phyla are disjoint at t = 7. These results are not surprising, as the plasmid 

genomes are known to evolve faster than the core genomes, and in combination with their smaller 

genome size, fewer shared k-mers are observed at a high similarity threshold26. 

Figure 4 shows E for all four I-networks at different thresholds. For all networks, the number of edges 

per node (thus network density) decreases as t increases; a higher proportion of shared k-mers is 

required at a higher (more-stringent) threshold. The rRNA gene-only network is denser than the 

others, i.e. E remains >1000 for t = 0 through t = 6, compared to E < 200 in the others for t = 0 

through t = 4. As expected, the highest density of the complete-genome network is observed at t < 2, 

E > 1400, and E decreases rapidly at t between 2 and 5. The network without rRNA genes has a lower 

density, E < 800, at t = 0 and decreases to level similar level to that of previous network at t = 5, e.g. 

E < 100. These results confirm that rRNAs are more highly conserved (i.e. the sequences are more 

similar as captured by 25-mers) than are the genome sequences overall. The density variation of the 

networks inferred based on whole-genomes and rRNA gene-removed data are more similar than the 

one observed for the rRNA-gene network. Figure 4 also shows that the plasmid network has the 

lowest density, E < 20 at t ≥ 0, implying that the plasmid genomes have diversified in 25-mer 

composition more rapidly than have the corresponding main genomes.  

 

Core k-mers of microbial genera  

We define a core k-mer in a group of interests as a k-mer that is present in every genome within the 

group, e.g. a core 25-mer in Proteobacteria is present in all proteobacterial genomes in our database 

(see Methods). Here, we identified core 25-mers for each genus in our 2785-genome dataset. Of these 

699 genera, 497 consist of only a single genome isolate, and 51 consist of highly divergent genomes 

for which no core 25-mers were identified; we exclude these data from this part of analysis. The 151 
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genera for which core 25-mers were identified are shown in Supplementary Table S6. To represent 

the variable numbers of representative isolates of these genera in our dataset, we define K as the 

number of distinct core k-mers per isolate for each genus; this value can indicate the extent of genome 

divergence (and thus evolutionary rate of these genomes) for each of these genera. The three genomes 

of Azotobacter have the highest number of core k-mers, with K = 1722079; these genomes represent 

distinct isolates of the same species, Azotobacter vinelandii. This is in contrast to the 123 

Streptococcus genomes (of 27 species) that share only one core k-mer (K = 0.008). Among the 20 

genera with the greatest K values, Shigella has the highest number of distinct isolates (10 isolates 

from four species) at K= 33698. This is in stark comparison to K = 4.82 among the 11 Ralstonia 

genome isolates from three species. Thus these Shigella genomes have diverged less from their 

common ancestor than have these Ralstonia genomes from theirs, as assessed by shared 25-mers.  

 

Core functions of microbial phyla 

To relate the shared k-mers to biological functions, we assembled all 25-mers in the 2785 genomes 

and their associated genome locations and annotated function based on Clusters of Orthologous 

Groups (COGs27) in a relational database. Then using the core 25-mers above, we identified the core 

functions in each of the 151 genera based on annotated functions that are associated with these k-mers 

(e.g. using k-mer position information to identify the corresponding gene, or non-coding sequence, 

and the gene annotation when available). For this analysis, we focused on protein-coding sequences 

(i.e. rRNA sequences were discarded: Methods), resulting a set of core 25-mers from 112 genera in 15 

phyla; the corresponding COG functional categories for these core 25-mers are shown in 

Supplementary Table S7. The non-informative functional categories R (General function prediction 

only) and S (Function unknown) were excluded in subsequent analysis. We do not identify any core 

k-mers related to the functional category Y (Nuclear structure) in our dataset. The less-represented 

functional categories in our data (those with proportion <1%) are A (RNA processing and 

modification), B (Chromatin structure and dynamics), W (Extracellular structure) and Z 

(Cytoskeleton). The Chloroflexi, Euryarchaeota and Thaumarchaeota are the only phyla with 
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evidence of core k-mers associated with the functional category B. The functional category A is 

related to core k-mers only in the proteobacterial classes (with the exception of the ε-Proteobacteria) 

and in phylum Actinobacteria. Figure 5 shows the proportions of COG number associated with core 

25-mers across the 23 COG categories for 16 phyla, showing the top five categories for each phylum. 

Categories E (Amino acid metabolism and transport) and C (Energy production and conversion) are 

among the top five categories in 15 and 13 phyla respectively. The ε-Proteobacteria, Thaumarchaeota, 

Euryarchaeota, Actinobacteria, Cyanobacteria and Chloroflexi are also the only phyla with category H 

(Coenzyme metabolism) in the top five. For the phyla Tenericutes, Deinococcus-Thermus, Firmicutes 

and Crenarchaeota, the most represented functional categories include P (Inorganic ion transport and 

metabolism), L (Replication and repair), J (Translation), E and G (Carbohydrate metabolism and 

transport). The phylum Bacteroidetes is the only phylum for which categories O (Post-translational 

modification, protein turnover, chaperone functions), Q (Secondary structure) and F (Nucleotide 

metabolism and transport) are among the top five. Phylum Spirochaetes is the only one with U 

(Intracellular trafficking and secretion) and T (Signal transduction) in the top five, but the COG 

numbers associated with core 25-mers are extremely low. 

In order to find if the phyla can be clustered based on their COG categories profiles, we performed a 

series of PCA analysis. PCA on the raw data (e.g. non-normalised counts of COG number) did not 

show evidence of any particular clustering (Supplementary Figure S2). Nor do the genera cluster 

according to the number of isolates (Supplementary Figure S3). These results confirm that the 

different numbers of isolates per genus do not bias our analysis of functional categories. 

Supplementary Figure S4 shows the PCA analysis performed on the normalised counts of COG 

numbers with center-scaled COG categories (e.g. COG categories with equal weights). In this analysis 

Nitrosopumilus, the only genus in phylum Thaumarchaeota in this dataset, is isolated from the other 

genera. Genus Dehalococcoides, a member of phylum Chloroflexi, is likewise separated from the 

other genera by this measure. 

 

Computational efficiency and scalability 
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To compute the !"#  distance between microbial genomes we used a modified version of our own 

implementation of the !" statistics7. This newer version was used to compute the !"#	distance of two 

genomes at a time. Each pairwise distance can be computed independently, so we ran thousands of 

parallel jobs for each pairwise comparison for our different AF networks across a high-performance 

distributed-memory computing cluster. On average, it takes about five seconds to compute the 

!"#	distance between two microbial genomes (time can vary depending on the genome size). The 

principal advantage of this approach is that it is not limited by memory consumption, as each job 

requires only a few hundred MB. Although visualisation of the network using the D3 library is 

scalable to large data, it can take a few minutes for the force-directed algorithm to provide an optimal 

layout for a densely connected network. 

Extraction of the core k-mers took less than an hour for our dataset of 2785 microbial genomes. 

Mapping the core k-mers of 1475 genomes to our SQL database (store on a SSD hard-drive) took less 

than one hour. 

 

Discussion 

In this study we demonstrate that AF approaches can be used to infer phylogenetic networks quickly 

and accurately for large-scale microbial whole-genome data. We introduce for the first time the 

concept of k-mer similarity network and two different types of AF networks, the I- and P-networks. 

We show that by combining a k-mer approach with the use of a relational database, biological 

information can be accessed for large-scale data at unprecedented speed. Finally, we define core k-

mers as k-mers present in every isolate genome of a genus, following the concept of core genes28,29. 

We examined the impact of rRNA genes and plasmids on the phylogenetic signal captured when 

computing phylogenomic relationships among microbial genomes. As expected, the rRNA genes 

contribute to the phylogenetic signal captured by 25-mers, as they do in MSA-based approaches. 

However, the pattern of network density versus threshold value (see Figure 4) indicates that the 

phylogenetic signal recovered here is not driven by rRNAs alone. Our result that, in general, these 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 7, 2017. ; https://doi.org/10.1101/125237doi: bioRxiv preprint 

https://doi.org/10.1101/125237
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 11	

rRNA genes do not resolve relationships among (and sometimes within) bacterial phyla is in line with 

many previous studies20,30-32}. The density of the AF plasmid network confirms the large diversity of 

these mobile genetic elements, and we found similarity between the connections observed between 

this network and the ones based on whole-genomes, with or without rRNA genes, and rRNA gene 

sequences. The proteobacterial classes tend to have the strongest connections in all our AF networks, 

in particular between β- and γ-Proteobacteria, and we also observed strong similarity between the 

Actinobacteria and Proteobacteria or Firmicutes across all networks. The large extent of LGT between 

β- and γ-Proteobacteria33 isolates partly explains this strong similarity in our AF networks.  

Overall, we demonstrated that the I- and P-networks provide a quick overview of the evolutionary 

relationships among whole genomes, or subsets of genomes, in large-scale datasets. Moreover, our 

AF networks, based on 25-mers pairwise comparison between two isolates, can be used to study the 

evolutionary dynamics aggregated at different taxonomic levels: by varying the distance threshold we 

can visualise evolutionary patterns among kingdoms (e.g. Archaea and Bacteria at t < 3), phyla (e.g. 

Proteobacteria, Firmicutes etc. at 3 £ t £ 5), classes (e.g. of Proteobacteria 4 £ t £ 6), and between 

and/or within genera (e.g. Escherichia coli and Shigella at t > 6).  

Our approach to find the most highly conserved functions (apart from those of rRNAs) using core 25-

mer profiles has shown that the biological functions associated with the metabolism and transport of 

amino acids, and the production and conversion of energy, are the categories most conserved in our 

dataset. The core 25-mer profiles revealed that similar core biological functions profiles are observed 

for phyla that share a large extent of k-mers in our AF network. Our analysis also indicates that the 

functions highly conserved in ε-Proteobacteria and in δ-Proteobacteria are distinct from those 

conserved in the other proteobacterial classes. Except for the two most highly conserved categories 

(above), the ε-Proteobacteria do not share highly conserved functions with the other classes of 

Proteobacteria; indeed, the ε-Proteobacteria share more 25-mers with the Firmicutes and with the 

Actinobacteria than with other Proteobacteria. These results support previous findings showing that 

the ε-Proteobacteria are the most-basal Proteobacteria by most criteria, and the last class among in 

this phylum to have been recognised34. Finally, we also observed that the Tenericutes are among the 
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only phyla that do not have highly conserved functions related to energy production and conversion; 

this can be related to their parasitic lifestyle35. 

Of these 699 genera, no core 25-mers were recovered for 51, particularly in genera represented by 

genome sequences for many isolates from different species. For these, a core k-mer sets might be 

sought at lower values of k, although at the potential risk of capturing a phylogenetic signal due to 

false positives and background noise. Similarly, some phyla that we used to identify highly conserved 

functions have few distinct COGs related to core 25-mers. 

A major advantage of AF approaches in general (and this approach in particular) lies in its 

computational performance in the inference of phylogenetic networks, and the extraction and 

mapping of core k-mers to biological functions7,36. Because our approach consists of independent 

pairwise comparisons we can distribute the computation across multiple processors, greatly 

minimizing problems potentially arising due to demand on memory7. Here we inferred 25-mer 

similarity networks among < 2700 genomes in a matter of hours. To map core k-mers to our database 

we took advantage of the SQL architecture, indexing and hashing to compare billions of k-mers in a 

few minutes using an SSD hard drive. The database itself could be generated in only a few hours from 

RefSeq data of more than 4000 microbial isolates. 

It would be of great interest to be able to discriminate the edges in the AF networks based on the 

dominant phylogenetic signal observed (e.g. vertical versus lateral). To visualise large phylogenetic 

network such as the one presented here, the D3 library (and web technology more generally) might 

not be the most optimal approach. Indeed, even with recent improvements of the JavaScript-based 

application and an optimised library such as D3, it is difficult for web browsers to display large 

networks in a force-directed layout. We could use instead use software specifically designed for 

visualisation of large networks, e.g. Gephi37, although undoubtedly at the expense of accessibility e.g. 

through unfamiliarity among users, or loss of cross-browser compatibility. Finally, we understand that 

an open-access, publicly available version of a k-mer database would be useful for our research 

community; however, such a database would require dedicated servers, management and support to 

be durable and useful at long-term for the community. 
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Methods 

Data 

The 2785 completely sequenced genomes of Bacteria and Archaea were downloaded from NCBI on 

31 January 2016 (Supplementary Table S1); functional annotation of these genomes was obtained 

through the corresponding RefSeq records. Genes encoding ribosomal RNAs were identified based on 

annotation. Genomes with no annotation information were excluded from our rRNA genes network. 

Among the 2785 isolates, 921 contains plasmids; these plasmid genomes were used in the plasmid-

only network.  

Relational database of k-mers and genome features 

We extracted 10,059,526,408 distinct 25-mers from the genomes of 4401 bacterial and archaeal 

isolates (as of 31 of January 2016 in NCBI RefSeq), of which 2781 genomes are complete. We 

tabulated these k-mers, and their genomic locations and features (based on RefSeq annotations), in a 

relational database using SQL, following Greenfield and Roehm36. Tables in this database contain the 

list of isolates, the list of genes and their sequences, taxonomic information for each isolate, an 

indexed list of all 25-mers, an indexed list of gene-by-gene comparisons for each pair of genes, and an 

indexed list of genome-by-genome comparisons for each pair of genomes. 

AF network 

We followed Bernard et al.18 in generating the AF networks. First we computed pairwise comparisons 

for the 2785 isolates and generated for each comparison the corresponding !"# distance7 d, using 25-

mers across parallel CPUs. For each pair of genomes a and b, we transformed d into a similarity 

measure Sab, where '%& = 10 − 	$. We discarded all instances for which $ >10, as these pairs of 

sequences share ≤ 0.01% of 25-mers (i.e. there is almost no evidence of homology). We then 

generated the networks using JSON files containing the S values as input for a Javascript script using 

the D3 library (https://d3js.org/). Here, we present two types of AF networks. For a phylum-level 

depiction of the network (P-network) we grouped all sequences of the same phylum as a single entity 
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prior to calculating the distance; each phylum is represented by a node in the network. The width of 

the edge between two nodes represents the number of connections between isolates from these two 

phyla, and the size of each node is proportional to the number of isolates in the phylum. For an 

isolate-level depiction of the network (I-network) we treated each genome isolate as a single entity 

(i.e. node). In this network, an edge between two nodes indicates evidence of shared k-mers. The AF 

networks include a similarity-score threshold t, for which only edges with ' > ) are displayed; 

changing t therefore can dynamically change the structure of the network18. The resulting dynamic 

networks can be visualized using any web browser. All the networks can be found here: 

http://espace.library.uq.edu.au/view/UQ:54303725. 

Core k-mers and COG categories 

For a specific group of microbial isolates (e.g. a genus, or a phylum) we extracted the set of 25-mers 

that are found in all isolates within the group; we define this set of 25-mers as the core k-mers for the 

corresponding group. Using the relational database of k-mers (above), for these core 25-mers we 

identified their corresponding genome locations and function based on COG (Clusters of Orthologous 

Groups)38 annotation in RefSeq records. We generated profiles of COG functional categories for each 

of the 151 genera, for each of the 11 phyla, and for the five proteobacterial classes in which core k-

mers are identified using our approach.  

Computational scalability and runtime  

Assessment of computational scalability was carried out using a high-performance distributed-

memory computing cluster based on Intel Xeon Haswell (3.1 GHz) cores. Comparative runtime 

analysis of alignment-free methods was made on Intel Xeon Haswell E5-2667 v3 cores rated at 

3.1GHz, using a single processor and one thread. 
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Figure Legends 

Figure 1: P-network of prokaryote genomes using !"# with k = 25 based on whole-genome data, at t = 

3. An edge between two nodes represents the number of connections between isolates from the two 

phyla. The size of a node is proportional to the number of isolates within the phylum.  

Figure 2: P-network of prokaryote genomes using !"# with k=25, based on whole-genome data with 

rRNA genes removed, at t = 3. An edge between two nodes represents the number of connections 

between isolates from the two phyla. The size of a node is proportional to the number of isolates 

within the phylum. Singletons are not shown.  

Figure 3: I-network of 921 plasmid genomes using !"# with k=25. An edge between two nodes 

represents evidence of share k-mers. 

Figure 4: Number of edges per node, E, across distinct threshold levels of t for each I-network based 

on (a) complete genomes (core-genome with rRNAs + plasmids), (b) rRNA gene sequences, (c) 

complete genomes without rRNA genes, and (d) plasmid genomes. 

Figure 5: P-network of prokaryote genomes using !"# with k=25, based on whole-genome data with 

rRNA genes removed, at t = 3. The nodes are pie-charts representing the COG-category profiles of 

each phylum. Each COG category is color-coded. Only the top five categories are displayed; in most 

cases the top 5 categories account for at least 50%. 
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