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Abstract9

A key component in many RNA-Seq based studies is the production of multiple replicates for varying experimental10

conditions. Such replicates allow to capture underlying biological variability and control for experimental ones. However,11

during data production researchers often lack clear definitions to what constitutes a ”bad” replicate which should be12

discarded and if data from failed replicates is published downstream analysis by groups using this data can be hampered.13

Here we develop a probability model to weigh a given RNA-Seq experiment as a representative of an experimental condition14

when performing alternative splicing analysis. Using both synthetic and real life data we demonstrate that this model15

detects outlier samples which are consistently and significantly different compared to samples from the same condition.16

Using both synthetic and real life data we perform extensive evaluation of the algorithm in different scenarios involving17

perturbed samples, mislabeled samples, no-signal groups, and different levels of coverage, and show it compares favorably18

with current state of the art tools.19

Availability: Program and code will be available at majiq.biociphers.org20

21

1 Introduction22

Alternative splicing, the process by which segments of pre-mRNA can be arranged in different ways to yield distinct23

mature transcripts, is a major contributor to transcriptome complexity. In humans, over 90% of multi-exon genes are24

alternatively spliced, and most of those exhibit splicing variations which are tissue- or condition-dependent [10]. This key25

role of alternative splicing (AS) in transcriptome complexity, combined with the fact that aberrant splicing is commonly26

associated with disease state [17], has led to great efforts to accurately map transcriptome complexity, identify splicing27

variations between different cellular conditions, across developmental stages, or between cohorts of patients and controls.28

Detection of splicing variations and the mapping of transcriptome complexity has been greatly facilitated by the29

development of technologies to sequence transcripts, or RNA-Seq. Briefly, RNA from the cells of interest, typically poly-A30

selected or ribo-depleted, are sheared to a specific size range, amplified, and sequenced. In most technologies used today the31

resulting sequence reads are typically around 100bp with read number varying greatly, from around 20 to 200M reads. The32

shortness of the reads, their sparsity, and various experimental biases make inference about changes in RNA splicing a33

challenging computational problem [1]. Consequently, many studies include several replicates of the conditions they are34

studying. Replicates are a key component in helping researchers distinguish between the biological variability they are35

trying to detect and variability associated with experimental or technical factors. However, what constitutes a ”good”36

replicate or an outlier experiment is not always clear. Intuitively, an outlier is a sample which exhibits dis-proportionately37

large deviations in exon inclusion levels compared to other biological replicates. An outlier could be the result of a failed38

experiment or of some previously unknown variability cause (e.g., different tissue source). Remarkably, despite the obvious39

importance of the question of what constitutes an outlier, this question has been mostly ignored in the literature. Instead,40

researchers are left to define outliers based on some heuristics which may not be ideal or carry unconscious biases. Thus, an41

important contribution of this work is to suggest a model which researchers could use to assess whether a set of replicates42

are ”well behaved” or might include outliers.43

Obviously, the presence of outliers can have deleterious effects on algorithms that aim to detect differential splicing44

between groups of experiments. Broadly, algorithms that aim to quantify differential splicing from RNA-Seq can be divided45

into two classes. The first, which includes tools such as RSEM [7] and Cuffdiff [15], aims to quantify full gene isoforms,46

typically by assuming a known transcriptome and assigning the observed reads to the various gene isoforms in the given47

transcriptome database. The second class of algorithms, which includes rMATS [13] and DEXSeq [2], works at the exon48

level detecting differential inclusion of those. Some algorithms such as SUPPA [5] can be considered a hybrid as they49

collapse isoform abundance estimates from other algorithms (e.g. SailFish [12] or SALMON [11]) to compute relative exon50

inclusion levels. Previous works showed that for the task of differential splicing, quantification algorithms that work at the51
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exon level generally perform better since they solve a simpler task and are less sensitive to isoform definitions or RNA-Seq52

biases within samples or along full isoforms [9]. Thus, for the comparative analysis section of this paper we focus on the53

second class of algorithms, and specifically on those that support replicates.54

Recently, we published MAJIQ, a method to detect, quantify and visualize differential splicing between groups of55

experiments. Besides the details of its statistical model, two key features distinguish MAJIQ from the algorithms mentioned56

above. First, MAJIQ does not quantify whole gene isoforms as the first class of algorithms described, or only previously57

defined AS “types” (e.g., cassette exons), as the second class of algorithms. Instead, MAJIQ defines a more general58

concept of “local splicing variations”, or LSVs. Briefly, LSVs are defined as splits in a gene splice graph where a reference59

exon is spliced together with other segments downstream (single source LSV) or upstream of it (single target LSV, see60

Figure 1a). Importantly, the formulation of LSVs enables MAJIQ to capture all previously defined types of AS (Figure 1b)61

but also many other variations which are more complex (Figure 1c). Specifically, previously defined AS event types are62

all binary, involving only 2 alternative junctions, while over 30% of human LSVs are complex, involving three or more63

alternative junctions. The second important distinguishing element of MAJIQ is that it allows users to supplement previous64

transcriptome annotation with reliably-detected de-novo junctions from RNA-Seq experiments (Figure 1d). We found that65

even when using a well-annotated species such as mouse, normal tissue data, and the full Ensembl transcriptome, MAJIQ66

detects 32% more differentially spliced LSVs which involve unannotated junctions. We validated many splicing events67

involving de-novo junctions and showed these are highly reproducible. However, MAJIQ was built to handle only ”good”68

replicate data. Thus, the second contribution of this work is to suggest a generalization of MAJIQ which enables down69

weighting of suspected outliers. Finally, the third contribution of this work is in extensive comparative analysis of MAJIQ70

and other algorithms in terms of reproducibility of inferred differential splicing events, false positives when no biological71

signal is expected, and independent validation using RT-PCR at varying degrees of read coverage.72

The rest of this paper is organized as follows: Section 2.1 formulates the outlier model and the resulting generalization73

of MAJIQ, termed MAJIQout, Section 2.2 then describes the methods used to evaluate algorithm performance and to74

generate synthetic data, Section 3 details the comparative analysis on synthetic and real data of several algorithms for75

detecting differential splicing using replicates, followed by a discussion and future directions.76

2 Methods77

2.1 Outlier weight model78

Let T be the set of RNA-seq experiments for which alternative junction inclusion is to be measured, and let t ∈ T be one79

such experiment. All experiments constitute observations of reads mapping to L LSVs. Let i = 1, 2, . . . , L, and let J be80

the number of junctions in LSV i with indices j = 1, . . . , J . Then Ψ
(t)
i,j is the inclusion ratio of junction j of LSV i within81

experiment t, with82

J∑
j=1

Ψ
(t)
i,j = 1, (1)

and Ψ
(T )
i,j is the inclusion ratio of junction j for the whole set of experiments, with the equivalent of Equation 1. Under the83

MAJIQ model, the set of Ψi,j for LSV i has a Jeffrey’s Dirichlet prior:84

{Ψi,j}Jj=1 ∼ Dirichlet

(
1

J
, · · · , 1

J

)
. (2)

To simplify computations, we consider the marginal distribution of Ψ for each junction:85

Ψi,j ∼ Beta

(
1

J
,
J − 1

J

)
. (3)

Define D
(t)
i,j to be the number of reads mapping to junction j of LSV i in experiment t. Rather than using D

(t)
i,j86

directly, MAJIQ applies a combination of GC bias corrections, stack removal, and bootstrapping from a zero-truncated87

negative binomial dispersion model over junction positions to return a per-junction read rate, µ. Let µ
(t)
i,j,m denote the mth88

bootstrapped read rate for junction j, where m = 1, . . . ,M . Define µ
(t)
i,m =

∑J
j=1 µ

(t)
i,j,m to be the total read rate for LSV i,89

and let µ
(t)

i,J\j,m = µ
(t)
i,m − µ

(t)
i,j,m. Then90

{Ψi,j}Jj=1 | {µ
(t)
i,j,m}

J
j=1 ∼ Dirichlet

(
1

J
+ µ

(t)
i,1,m, · · · ,

1

J
+ µ

(t)
i,J,m

)
, (4)

with marginal distribution91

Ψi,j | {µ(t)
i,k,m}

J
k=1 ∼ Beta

(
1

J
+ µ

(t)
i,j,m,

J − 1

J
+ µ

(t)

i,J\j,m

)
. (5)

In other words, Ψ is informed by the ratio of junction read rates. Indeed, as
∑J
j=1 µ

(t)
i,j,m → ∞, E[Ψi,j | {µ(t)

i,j,m}
J
j=1] →92

µ
(t)
i,j,m∑J

k=1
µ

(t)
i,k,m

for each j.93

We marginalize over the bootstrap samples by averaging their probability densities:94

P
(

Ψi,j | {µ(t)
i,k,m}

J
k=1

M

m=1

)
=

1

M

M∑
m=1

P (
(

Ψi,j | {µ(t)
i,k,m}

J
k=1

)
(6)
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To simplify notation, let Ψ | µt = Ψi,j | {µ(t)
i,k,m}k≤J,m≤M95

MAJIQ assumes that all the experiments in T are replicates of the same biological condition (tissue type, treatment,96

disease state, etc.). It follows that all experiments in T should share an underlying condition Ψ, denoted ΨT
i,j , ∀i, j. under97

this modeling assumption, Equation 5 generalizes to98

Ψi,j | µT,m ∼ Beta

(
1

J
+
∑
t∈T

µ
(t)
i,j,m,

J − 1

J
+
∑
t∈T

µ
(t)

i,J\j,m

)
, (7)

where µT,m = {µt,m}t∈T . A marginalization over m = 1, . . . ,M exists and is a generalization of Equation 6. In this paper,99

we negate the replication assumption and consider the case where most but not all of the experiments in T represent the100

same experimental condition.101

Definition 2.1. An outlier in T is an experiment in T which does not represent the same experimental or biological102

condition as the majority of the experiments in T . Specifically, s is an outlier in T if103

Ψ
(s)
i,j 6∼ Ψ

(T )
i,j (8)

for a sufficiently large proportion of LSVs.104

Let ρT (s) be the probability that replicate s is not an outlier in T , and define ρT = {ρT (s)}t∈T . We propose a generalized105

version of Equation 7 to estimate Ψi,j | µ′T , where106

µ′T = ρT · µT . (9)

In order to estimate ρT (s) for suspected outlier s, we define a per-LSV metric of dissimilarity between Ψ distributions for107

each experiment relative to the group consensus.108

Definition 2.2. Let X and Y be two continuous random variables with pdfs fX and fY , respectively, such that at least109

one of their pdfs is nonzero on the interval I. The Lp divergence between X and Y is defined as110

dp(X,Y ) =

(∫
I

|fX(t)− fY (t)|pdt
)1/p

. (10)

If X and Y are discrete random variables with pmfs fX and fY , respectively, such that at least one of their pmfs is nonzero111

for a ≤ k ≤ b, then the Lp divergence between X and Y is defined as112

dp(X,Y ) =

(
b∑

k=a

|fX(k)− fY (k)|p
)1/p

. (11)

Setting X = Ψ
(t)
i,j with pdf ft, and Y = mediant∈TΨ

(t)
i,j with pdf fmed, in Equation 10, we have113

dp
(

Ψ
(t)
i,j ,mediant∈TΨ

(t)
i,j

)
=

(∫ 1

0

|ft(ψ)− fmed(ψ)|p
)1/p

dψ. (12)

1
114

From this point, we define d
(t)
i,j = dp

(
Ψ

(t)
i,j ,mediant∈TΨ

(t)
i,j

)
. We can summarize the Lp divergences of each replicate with115

respect to LSV i by taking the max divergence for each replicate over the junctions:116

d
(t)
i = max

j≤J
d

(t)
i,j . (13)

This leads into our primary postulate for outlier detection.117

Postulate 1. s is an outlier in T if d
(t)
i is large for sufficiently many LSVs i.118

We say d
(t)
i is large if it exceeds a predefined threshold τ > 0. Intuitively, we can think of τ as a biologically informed119

definition for what constitutes a meaningful deviation. In the experiments that follow we found results were robust for a120

wide range of τ values (see below). Notably, for any reasonable τ definition we find that d
(t)
i > τ for multiple LSVs by121

chance alone. Let Kt(τ) be the set of LSVs i such that d
(t)
i > τ , and let KT (τ) =

⋃
t∈T Kt(τ). For fixed τ , we use the122

abbreviated notation Kt and KT , respectively. Intuitively, Kt captures the total amount of significant variability in T , with123

more noisy data exhibiting large |Kt| values. Importantly, if T has no outliers, we expect the high-divergence LSVs to be124

approximately evenly distributed across all replicates t ∈ T . That is,125

E[|Kt|] =
|KT |
|T | . (14)

1Because we bootstrap D
(
i,jt) to capture more of the posterior variance in Ψ, we cannot explicitly define ft in closed form. The median

distribution, similarly, cannot be defined in closed form. To accommodate this, we discretize both distributions over fixed-width bins on the interval
[0, 1].
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Thus it is natural to model |Kt| as a Binomial(n, p) random variable with parameters n = |KT | and p = |T |−1. In practice,126

however, the variance of the Binomial distribution (in this case, |KT |(|T |(1− |T |))−1) does not fit well variability of real127

data (data not shown). We account for this by letting p ∼ Beta(α, β) with parameters α, β such that128

α

α+ β
=

1

|T | ,

α+ β = θ,

where θ is a user-defined dispersion hyperparameter. In our experiments, setting θ = 0.10 was sufficient to capture outlier129

samples in scenarios that included clear biological replicates. Under the full Beta-Binomial model, we finally define130

ρT (t) ∝ P (|Kt| ≥ |Kt|obs | |KT |, |T |, τ, θ)

∼ BB

(
|KT |,

θ

|T | , θ
(

1− 1

|T |

))
. (15)

We further adjust these weights so that P (|Kt| ≥ EΘ[|Kt|] = 1:131

ρT (t) =

{
PBB(|Kt||Θ)

PBB(EΘ[|Kt|]|Θ)
, |Kt| > EΘ[|Kt|],

1, else.
(16)

2.2 Performance evaluation metrics132

There is an inherent challenge in assessing the accuracy of methods for RNA-Seq analysis since the underlying true values133

are rarely known. Some works use synthetically-generated samples with specific transcripts spiked at different concentrations134

which may be very different from real life samples, while others resort to synthetic sequencing data generation under various135

simplifying assumptions. Instead, we focus here on using real life data with multiple replicates to assess reproducibility in136

different experimental setups as a mean of assessing the performance of Ψ and ∆Ψ quantification algorithms. Specifically,137

we use a reproducibility measure (RR) similar to the irreproducible discovery rate (IDR), which has been used extensively138

to evaluate ChIP-Seq peak calling methods [8] and, more recently, for methods detecting cancer driver mutations [14].139

Conceptually, RR is a rank-based statistic, agnostic of an algorithm’s model or scoring metric, which measures the proportion140

of high-ranked events (e.g. ChIP-Seq peaks or differentially-spliced events) that are also observed in a second, independent141

iteration of the same experiment. To compute the RR, an algorithm A is run on a ”training” set, denoted S1, and outputs142

the number of differentially-spliced events (NA), ranked by their relative significance or score. For any n ≤ NA, we then143

compute the size of the subset of events(RA(n) = n′ ≤ n) of those n events which are ranked in the n highest ranking events144

in a second ”hidden” test set (S2). The reproducibility graph plots RA(n) as a function of n, with perfect reproducibility145

corresponding to a 45◦ line, and the reproducibility ratio RR statistic defined as the point (RA(NA)). We note that unlike146

the definition in [16], the RR graph is plotted as a function of n, n′ and not n
NA

, n
′

NA
because the algorithms compared in147

this work varied greatly in terms of the overall number of events reported as significantly changing (NA).148

We acknowledge some key caveats regarding the usage of the reproducibility ratio RR and the number of significant149

events detected (NA) to assess an algorithm’s performance. First, both RRA and NA are not inherent characteristics of an150

algorithm A but rather a combination of an algorithm and a dataset. Furthermore, different algorithms may use different151

statistical criteria to call a splicing variation significantly changing. Consequently, their NA may vary greatly. Second,152

reproducibility by itself is not a measure of accuracy as algorithms can be highly reproducible yet maintain a strong bias.153

In order to better assess accuracy of methods for differential splicing quantification, we perform two additional tests of154

performance. First, we assess a lower bound on the number of false positives (FP) by creating a balanced mix between155

experimental conditions. Consequently, the two groups being compared are expected to be identical mixes of biological156

conditions. The significantly changing events under this test (Nns) are expected to be FPs. However, since we can not rule157

out inherent unknown bias even within the no-signal groups, we compute R(Nns), expecting it to be close to 0. We then158

compute a conservative lower bound estimate on the False Discovery Rate (FDR) for a given algorithm A on dataset D159

as FDR(A,D) ≥ Nns
A ·(1−R(Nns

A ))

NA
. Finally, as a second measure for an algorithm’s accuracy, we used RT-PCR triplicate160

experiments from previous studies [16]. This measure is limited by the total number of events quantified, possible selection161

biases, and limitations of the experimental procedure. For example, for accurate quantification to be valid, careful reading162

of the gel bands (rather then qualitative calling of changes) need to be executed in triplicates. However, carefully executed163

RT-PCR provide valuable experimental validation and is considered the gold standard in the field.164

2.3 Synthetic perturbation165

To observe the impact of disagreement on Ψ in a controlled fashion, we use a real replicate and perturb it to create a166

synthetic new pseudo-replicate outlier using the following procedure:167

1. Set θ ∈ [0, 1], δ ∈ [0, 1], and γ > 0.168

2. Randomly sample L ⊂ LSVs with |L| = θ|LSVs|.169

3. For l ∈ L with per-junction read rates µl,j , j = 1, . . . , J :170

(a) Estimate E[Ψl,j ] for each junction.171
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(b) Sample ε ∼ U(0, 1) and let

σ =

{
−1, ε < E[Ψl,1],

1, else.

(c) Set E[Ψ∗l,1] = min(max(E[Ψl,j ] + σδ, 0), 1).172

(d) For 2 ≤ j ≤ J , set

E[Ψ∗l,j ] = E[Ψl,j ] +
E[Ψl,1]− E[Ψ∗l,1]

J − 1
.

(e) For 1 ≤ j ≤ J , set

D∗l,j = E[Ψ∗l,j ]
µl,j∑J
k=1 µl,k

.

4. For l ∈ LSVs \ L, set µ∗l,j = µl,j .173

5. For l ∈ LSVs, set µ∗l,j = γµ∗l,j .174

Observe that when γ = 1 and 0 ∈ {θ, δ}, the synthetic perturbation does not alter µ for any LSV. We measure the effect of175

variations in θ, δ, and γ on ρT and RR by applying the above Ψ perturbation to one replicate in set S1.176

2.4 Mislabeled sample177

In an extreme case, we explore the effects of mislabeling a sample. We simulate this by swapping out one replicate in the178

set S1 with a sample from a different condition within the same dataset.179

2.5 Source data180

The results described here were derived using data from two different studies. Most of the analysis was done using RNA-seq181

data sourced from the Mouse Genome Project (MGP) transcriptome initiative [6]. The MGP dataset covers six tissues in182

Mus musculus with six biological replicates each, at 18-30 million reads per replicate. We supplement this data with a more183

recent study from [19] which includes twelve mouse tissues samples across eight time points. We use these data to test184

reproducibility across datasets, for behavior under no-signal conditions, and for comparison to biochemical quantifications185

of splicing.186

3 Results187

Figure 2 shows the effect of different synthetic perturbation of a replicate on the weight associated with that sample188

(ρT , left column), the number (NA, middle column) of LSVs reported as differentially spliced with high confidence189

(P (|∆Ψ| > 0.2) > 0.95%), and the reproducibility ratio (RRA = RA
NA

, right column). At δ = 0.6, γ = 1 (top row) the outlier’s190

weight ρt scales linearly in log scale to the fraction of LSVs perturbed and 10% is sufficient to drop ρt to 0.1. Consequently,191

MAJIQ detects up to approximately 400 false positives and reproducibility drops down to approximately 60% while both192

NMAJIQout and RRMAJIQout remain stable (Figure 2b,c). At θ = 0.3, γ = 1 (middle row), increasing δ initially causes193

the weight on the outlier to decrease towards a positive infimum. For larger δ > 0.5, the NMAJIQ increases 4-fold with a194

corresponding 50% drop in RRMAJIQ. At θ = 0.3, δ = 0.6, decreasing γ towards 0 causes the weight to shrink, suggesting195

that the algorithm is highly sensitive to low read counts. Indeed, without enough reads, the estimated Ψ distribution does196

not vary significantly from the prior. Unsurprisingly, increasing the read rates to 150% does not significantly affect the197

weight. It does, however, increase the unreliability of MAJIQ, tripling NMAJIQ while nearly halving RRMAJIQ. In all198

these cases, MAJIQout remains resistant to the perturbations.199

Next, we evaluated the reproducibility with and without a sample swap for a large set of algorithms. In all cases, we200

used 2 heart samples vs. 2 liver samples for the validation set 2. Set 1 included either 2 liver samples compared with 2201

heart samples (no swap) three livers compared with two hearts and one hippocampus sample (swap case). To produce the202

reproducibility curves we followed the following procedure. For MAJIQ and MAJIQout, NA was defined over set 1 as the203

set for which P (|∆Ψ| >= 0.2) > 0.95 as in [16]. Similarly, for SUPPA and rMATS we define NA as the set of significant204

events with ∆Ψ >= 0.2; we use the provided p − value <= 0.05 in order to filter for significance. DEXSeq returns205

a log2 fold change value rather than a ∆Ψ; in this case the rank is based on log2 fold change > 4, and we call an event206

significant if its adjusted pvalue <= 0.05. We also tried to rank rMATS hits by FDR rather than ∆Ψ, but these rankings207

were far less reproducible than the ∆Ψ-based rankings (data not shown).208

Figure 3 summarizes the results for the evaluation procedure described above. One clear observation is the huge209

variation in the number of events reported as significantly changing by the different methods even when no outliers are210

present, ranging from 576 MAJIQ, through 1359 and 1686 (rMATS and SUPPA respectively) to 8096 (DEXSeq). When211

compared to the other algorithms without an outlier replica, both MAJIQ and MAJIQout exhibit significantly higher levels212

of reproducibility of the events ranking for significant changing events regardless of the N cutoff (light blue and light purple213

lines respectively). The higher reproducability is specifically notable for the several hundred top ranked events (inset figure).214

When an outlier is present, MAJIQ’s N jumps to 886, and reproducibilty drops dramatically; MAJIQout, meanwhile, is215

not affected by the outlier (dark blue and dark purple lines respectively). The reproducibility ratio of rMATS, SUPPA216

and DEXSeq is generally lower, but these are not so sensitive to outliers. Noticeably, in some cases reproducibility even217

improves compared to the control, likely due to the introduction of the additional ”good” liver sample in Set 1.218
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Next, we repeated the reproducibility evaluation but with a different dataset and at different levels of coverage, varying219

from 100% through 50% to 25% of the original reads (Figure 4). Unlike the other algorithms, without parameter adjustments220

MAJIQ may be sensitive to low coverage since it relies on junction spanning reads. MAJIQ’s default parameters, constructed221

for high-coverage data, require 10 reads from 3 different positions across a junction to define quantifiable events [16]. In222

order to maintain sufficient detection power at low coverage we adjusted these parameters to 3 reads from 2 positions, and223

also allowed the minimal number of samples including this event to drop to one. At the baseline of 100% coverage, this224

data included 4 replicates per tissue (cerebellum vs. liver) with an average of approximately 80M reads per sample. The225

larger number of replicates and higher coverage led to a much higher number of events identified as differentially spliced by226

all methods, and likely contributed to overall higher reproducibility as well. In terms of comparison between methods, the227

same trend remained, with MAJIQout comparing favorably with a stable reproducibility ratio of around 82% at different228

coverage levels. However, with the increased coverage and replicates compared to the data in Figure 2, MAJIQout denoted229

approximately 2000 events as deferentially spliced − similar to SUPPA, less than rMATS (∼2500), and significantly less230

than DEXSeq (¿8000). Finally, when testing the effect of lower coverage (x0.5, x0.25, dashed and dotted lines in Figure 4),231

we found some drop in reproducibility in most cases, with DEXSeq appearing to be the most sensitive to coverage levels.232

In order to assess the fraction of false positives from the set of events reported by each method (FDR), we created233

no-signal groups from the datasets used in Figure 3 and Figure 4 by comparing two sets that involve an equal mix of234

replicates from the two tissues (see Section 2). This gave us a total of four no-signal groups for which we tested how many235

events were still determined as significantly changing. We found MAJIQ reports a lower number of events suspected to be236

false positive, with SUPPA and DEXSeq both suffering from high Nns values and high variability between sets. This high237

variability may point to possible sensitivity to the dataset definition.238

As expected, the set of events identified as deferentially spliced in the no signal groups also exhibited low reproducibility239

ratios (R(Nns), see Figure S2). By combining N ,Nns and R(Nns) as detailed in Section 2, we got a conservative lower240

bound on each methods FDR for each of the datasets. Figure 5b, shows MAJIQ had a significantly lower FDR estimate241

especially compared to SUPPA and DEXSeq.242

Finally, we assessed the methods accuracy by RT-PCR as a function of the read coverage, either 100%, 50%, or 25%243

of the original reads (Figure S3). We downsampled cerebellum and liver timepoints CT28, CT40, and CT52 from the244

mouse circadian study [19] and correlated them with 50 RT-PCR ∆Ψ quantifications from the same tissue comparison. For245

the reduced-coverage experiments, we adjusted MAJIQ’s execution parameters as described above. We found that on the246

original data (100%), MAJIQ recapitulates the results from [16] Figure S2.1B, and MAJIQout does not differ significantly247

(R = 0.982). By this metric, rMATS performs similarly to MAJIQout, while SUPPA slightly underperforms both algorithms.248

Decreasing the simulated read depth slightly decreases the number of LSVs which MAJIQ and MAJIQout are able to detect249

as quantifiable (47 at 50%, 43 at 25%), but correlation with the same RT-PCR quantifications remains high (R = 0.962 at250

25%). rMATS maintains all events and performs similarly to MAJIQout on both downsampled fractions while SUPPA’s251

correlation drops below 0.90 on the downsampled datasets.252

4 Discussion253

In this paper we developed a new model to automatically detect and down weight outliers in RNA-Seq datasets with254

replicates for splicing analysis. The problem of detecting outliers in batches of biological replicates has not received much255

attention in the literature as researchers are likely to simply discard samples before publication based on some heuristic.256

Such a heuristic may in turn reflect unconscious bias or cause good data to be lost. Next, by merging the outlier detection257

model into our previous algorithm, MAJIQ, we created a generalized version of the latter termed MAJIQout. We analyzed258

MAJIQ and MAJIQout using synthetic and real life data and showed MAJIQout maintains MAJIQ’s favorable performance259

on data without outliers, and was also robust to outliers. When read coverage was low, MAJIQout was able to maintain260

relatively high detection power, high reproducibility, and high correlation to RT-PCR by adjusting its default execution261

parameters. However, since different datasets may suffer from different types of noise or biases, it is advisable for potential262

users to test algorithms using the kind of evaluation criteria introduced here, including reproducibility plots, no-signal263

groups, and RT-PCR. In addition, the methods tested here differ greatly in the set of features they offer. MAJIQ is the264

only one that offers the ability to detect complex splicing variations involving more than two alternative junctions, and265

couples these with interactive visualization and genome browser connectivity. It is also capable of supplementing a given266

transcriptome annotation with reliable de-novo junctions detected in the RNA-Seq data. While useful for even normal267

tissues [16], this feature is particularly relevant for disease studies, cases where uncharacteristic splicing is expected, and for268

species with poorly-annotated transcriptomes. Notably, the latest version of rMATS offers to include de-novo junctions269

but requires those to be at a predefined distance (a user-controlled parameter) so it can add those to annotated exons. In270

contrast, MAJIQ is able to detect completely novel junctions and exons. This ability of MAJIQ does come with a price of271

algorithm complexity and, consequently, execution time. While we did not perform detailed benchmarking, MAJIQ was272

much faster than rMATS and DEXSeq. However, SUPPA was much faster than all the other methods, as it assumes a273

known transcriptome and uses fast pseudoalignment algorithms such as SALMON to quantify each transcript’s abundance.274

These assumptions may have deleterious effects on performance and might be at least partially responsible for the higher275

rate false positive we observed for SUPPA.276

There are several important directions in which this work can be extended. First, MAJIQout can be further improved277

both in terms of memory consumption and running time. While we were able to process over 100 samples with the current278

implementation on machines with 64GB of memory, parsing several hundreds or thousands or samples is currently not279

feasible. Furthermore, all the algorithms compared here were designed for datasets with small sets of replicates. Large280

heterogeneous datasets, such as those created in cancer studies, are likely to benefit from different statistical models. Finally,281
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MAJIQ’s improved quantifications can be used to subsequently derive new models for splicing codes and splicing predictions282

given genetic variations [3, 4, 18]. Such improvements form a promising path for future algorithm development.283
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Figure 1: Illustration of the LSV definition. a. LSVs can be single-source (5’ split) or single-target (3’ join). b. The LSV
definition is sufficient to explain the classical binary splicing event types. c. The LSV definition explains additional complexity
observed in metazoan genomes, including non-classical binary events and complex (3 or more junctions) events. d. An
example of a complex splicing event at the mouse Eif4g3 locus, augmented with de-novo junction detection by MAJIQ and
validated by RT-PCR. Junctions drawn in red arise from the annotation and are supported by RNA-seq, whereas junctions
drawn in green were detected from RNA-seq but not the annotation.
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Figure 2: Effect of varying the synthetic perturbation hyperparameters on computed weights ρT (a, d, g), detection power (b,
e, h), and reproducibility of detected events (c, f, i). a-c. Dependence on θ with δ = 0.60 and γ = 1.00. d-f. Dependence on
δ with θ = 0.30 and γ = 1.00. g-i. Dependence on γ with θ = 0.30 and δ = 0.60.
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Figure 3: Reproducibility plots for differential splicing between tissues w/wo a mislabeled sample, as described in the text.
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Figure 4: Reproducibility plots for differential splicing between tissues at different simulated coverage levels. a. DEXSeq; b.
SUPPA; c. rMATS; d. MAJIQout.
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Figure 5: Evaluation of methods under no-signal conditions for SUPPA, rMATS, DEXSeq, and MAJIQ. a. Number of
detected events. b. Lower-bound estimate of false discovery rate.
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Figure 6: a. Correlation coefficients of SUPPA, rMATS, and MAJIQ with RT-PCR from [16] as a function of read coverage.
A total of 50 events were quantified. In order to enable comparison to other methods only simple cassette exons from the
annotation database were tested and no complex variations were included. b. Size of the intersection between the events
detected by each method and the subset of events for which RT-PCR ∆Ψ quantification was performed.
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Figure S1: Supplement to Figure 3. Extended RR plot for DEXSeq showing the large number of splicing events flagged as
significantly changing in the replicate swap experiment. Events beyond the 8000th call were ignored.
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Figure S2: Supplement to Figure 5. Fractions of events detected in the no-signal runs which were reproduced in a second,
disjoint no-signal experiment. These values were used to estimate the false discovery rates reported in Figure 5b.
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Figure S3: Supplement to Figure 4. RT-PCR correlations for 50 LSVs in the Hogenesch Cerebellum vs. Liver experiment,
with downsampling. a-c. SUPPA; d-f. rMATS; g-i. MAJIQ. a,d,g. No downsampling; b,e,h. 50% downsampled; c,f,i. 25%
downsampled.
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