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Abstract 1

We present an approach to estimating the nature of the Waddington (or 2

epigenetic) landscape that underlies a population of individual cells. Through 3

exploiting high resolution single cell transcription experiments we show that cells 4

can be located on a landscape that reflects their differentiated nature. 5

Our approach makes use of probabilistic non-linear dimensionality reduction 6

that respects the topology of our estimated epigenetic landscape. In simulation 7

studies and analyses of real data we show that the approach, known as topslam, 8

outperforms previous attempts to understand the differentiation landscape. 9

Hereby, the novelty of our approach lies in the correction of distances before 10

extracting ordering information. This gives the advantage over other attempts, 11

which have to correct for extracted time lines by post processing or additional 12

data. 13

High-throughput single-cell real-time polymerase chain reaction gene expression 14

measurements (Section S2) are new and promising techniques to give insights into the 15

heterogeneous development of individual cells in organism tissues [19]. However, 16

interpretation of measurements can be highly challenging. 17

Waddington [32,33] proposed an analogy for understanding the process of 18

differentiation, known as Waddington’s landscape or the epigenetic landscape. The 19

analogy is based around the idea that differentiated cells are located at different points 20

on the epigenetic landscape with particular paths through the landscape more likely 21

than others due to its underlying topology. Think of a map of an alpine area, 22

historically populations became isolated in valleys and differentiated. Topology and 23

location are key aspects of the analogy. 24

Visualisation of such landscapes is an important aid to biologists involved in 25

studying the evolution of individual cells either in development or cancer. In this paper 26

we reconstruct such landscapes from rich phenotype information from each of the 27

individual cells. In particular, we extract maps of the epigenetic landscape given the 28

observations of gene expression. 29

The mathematical underpinnings of mapping involve a projection from a low
dimensional space to a higher dimensional space. Classically we might wish to project
the three dimensional world around us down to two dimensions for use as a map or a
chart. Formally this involves a mapping, f(⋅) from the positions in the two dimensional
space, x, to our measurements, y:

y = f(x).

In epigenetic landscapes, rather than considering the high dimensional measurements 30

to be direct measurements of the physical world around us, we instead observe a rich 31

phenotype, such as the gene expression of an individual cell, y. Our aim is to develop a 32

coherent map such that the position of each cell, x, is consistent with cells that are 33

1/14

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 8, 2016. ; https://doi.org/10.1101/057778doi: bioRxiv preprint 

https://doi.org/10.1101/057778
http://creativecommons.org/licenses/by/4.0/


expressing a similar phenotype. In other words, if two cells have a similar gene 34

expression they should be located near to each other in the map, just as two people 35

located near to each other in a real landscape would have a similar view. 36

The utility of a map is given by the precision in which it can be recreated. 37

Geographic surveys were originally created through triangulation and laborious ground 38

level surveys. The challenges we face for the epigenetic landscape are somewhat greater. 39

In particular the measurements of phenotype are subject to a great deal of noise, 40

particularly in single cell experiments, in other words there is a mistiness to the 41

observations. Further, we cannot access all areas. We can only query individual cells as 42

to their particular phenotype, we cannot move around the landscape at will. Finally, 43

there is a complex, most likely non-linear relationship between any location on the map 44

which is unknown. 45

We are inspired by challenges in robotics: in robot navigation a robot facing a 46

landscape for the first time needs to continually assess its current position (the values of 47

x) and simultaneously update its estimate of the map (the function f(⋅)). This 48

challenge is known as as simultaneous localisation and mapping (SLAM [26]). 49

For example Ferris et al. [9] showed how simultaneous localisation and mapping 50

could be formed by measuring the relative strength of different WiFi access points as it 51

moves around a building. When you are near to a given access point you will receive a 52

strong signal, when far, a weak signal. If two robots both perceive a particular access 53

point to have a strong signal they are likely to be near each other. We can think of the 54

WiFi access points as landmarks. In our case landmarks are the (noisy) gene expression 55

measurements. If two cells have a similar set of gene expression measurements they are 56

also likely to be near each other. A further challenge for our algorithm is that gene 57

expression measurements are very high dimensional and can be extremely noisy. 58

Because of the analogy to SLAM algorithms and our use of topology to develop the 59

landscape we refer to our approach as topslam (topologically aware simultaneous 60

localisation and mapping). 61

The relationship between the epigenetic landscape and the observed data is 62

dependent on a complex set of interactions between transcription factors, genes and 63

epigenomic modifications. Unpicking the mechanism behind this relationship is 64

extremely challenging [2]. Instead we propose an alternative, data driven approach 65

based on machine learning algorithms and judicious application of probabilistic methods. 66

Quantitative determination of single-cell gene expression is commonly used to 67

determine the—known to be heterogeneous—differentiation process of cells in cancer [7] 68

or in the early development of multicell organisms [14]. The measurement of single cells, 69

however, can give rise to systematically introduced errors in the identification of sub 70

processes in the cell and in the assignment of cells to their specific cell-lines. This is due 71

to the low amounts of mRNA available in single cells: the mRNA requires amplification 72

using polymerase chain reaction (PCR, see e.g. [11, 16,20]). 73

These technical limitations complicate analysis: they introduce non-linear effects and 74

systematic errors. So as promising as high throughput methods are, they require 75

sophisticated analyses to resolve confounding factors. By providing the scientist with 76

the underlying Waddington landscape for cells in a given experiment, along with the 77

location of each cell in the landscape, we hope to significantly simplify this process. 78

Unpicking the nature of the genetic landmarks in the presence of noise typically exploits 79

feature extraction, where high dimensional gene expression data has its dimensionality 80

reduced [10,14,22,23], often through linear techniques. However, it is difficult to 81

determine the number of dimensions to use for further analyses [3–5]. 82
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1.1 Dimensionality Reduction 83

Dimensionality reduction gives a view on the landscape of the underlying biological 84

system. To perform dimensionality reduction we need a mathematical model that 85

extracts the salient aspects of the data without exhibiting vulnerability to confounding 86

factors such as technical or biological noise. 87

Probabilistic models aim to trade off the useful structure with the confounding 88

variation through specifying probability distributions for each component. We consider 89

non-linear probabilistic models that not only model the landscape as a non-linear 90

surface (think of an irregular skiing piste, in which you want to turn into the flat bits, 91

as opposed to a flat beginners slope, where you can just go in a straight line), but also 92

allow us to determine the dimensionality necessary to explain the gene expression 93

variation, while explaining away the noise through a separate model component. 94

Linear methods can also be given probabilistic underpinnings, but they suffer from 95

the severe constraint of only allowing the landscape to be linearly related to the genetic 96

landmarks. Conversely deterministic (i.e. non-probabilistic) non-linear methods do not 97

offer a principled approach to separating the confounding variation from the landscape’s 98

underlying structure. It can be hard to grasp topographical relationships due to the 99

deterministic nature of the technique. Either additional data or additional correctional 100

deterministic algorithms are necessary for a coherent mapping [1, 24]. 101

We make use of the Bayesian Gaussian process latent variable model (Bayesian 102

GPLVM [28]), a probabilistic dimensionality reduction technique that extracts the 103

relevant dimensionality of the latent embedding as well as expressing a non-linear model. 104

Further, we make use of the geometry of the underlying map by exploiting recent 105

advances in metrics for probabilistic geometries [29]. 106

1.2 PCA and Graph Maps 107

An approach such as principal component analysis (PCA) makes an assumption of a 108

linear relationship between the high dimensional measurements and the cell’s location in 109

the landscape. This limiting assumption is normally alleviated by proceeding in a two 110

step manner. First PCA is done for all data, then the locations in the linear map are 111

clustered and a further PCA is applied to each cluster separately, giving one coordinate 112

system per cluster [14] (see also [27] for an elegant implementation of this approach). 113

Islam et al. [18] developed a graph based method, using similarities of cell profiles to 114

characterise two different cell types in a so called “graph map”. 115

The underlying probabilistic dimensionality reduction technique has been 116

successfully used in other applications to single cell transcriptomics data, e.g. for 117

visualisation [3], to uncover sub populations of cells [4] and to uncover transcriptional 118

networks in blood stem cells [21]. 119

Our topslam approach is a generalisation of the idea of “graph maps”: Waddington’s 120

landscape [32,33] can be seen as a non-linear map for the branching process of cells, 121

where the cell process is described as a ball rolling down a hill following stochastically 122

(by e.g. cell stage distribution) the valleys of the hillside (Fig. 1). 123

The novelty of our approach is to not correct after extraction of graph information, 124

but to correct the distance the graph extraction uses to extract information. We can do 125

that by estimating the underlying Waddington landscape along differentiation of cells. 126

1.3 Independent Component Analysis and Non-linear 127

Dimensionality Reduction 128

Recovery of the epigenetic landscape as an intermediate step facilitates the extraction of 129

other characteristics of interest, such as pseudotime, in cell stage development. For 130
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Figure 1. Representation of the probabilistic Waddington’s landscape. The contour
lines represent heights of the landscape. We want to be in the valleys of this landscape
(akin valleys of mountains). The time is then extracted along the cells such that it
follows the landscape, depicted as splitting arrows. This also reflects the separate cell
fates in the epigenetic progression of the cells.

example Trapnell et al. [30] apply independent component analysis (ICA, see e.g. [17]) 131

on the gene expression experiment matrix to develop a low dimensional representation 132

of the processes. They then build a minimal spanning tree (MST) on the distances 133

developed from the resulting latent representation to reconstruct a Waddington’s 134

landscape given by ICA. After some correction, if there are branching processes, they 135

report the longest paths along the MST as the pseudotime backbone and the summed 136

distances as the pseudotime ordering for each cell. However, this method relies on 137

having rough estimates of the capture time to induce the ordering in the pseudotime 138

estimate. Our probabilistic description of Waddington’s landscape relieves this 139

requirement and allows for post analysis of data sets which do not provide such 140

estimates. 141

Other methods apply deterministic non-linear dimensionality reductions and attempt 142

to recover the underlying pseudotime in a probabilistic framework [6]. The Wanderlust 143

algorithm applies the t-SNE [31] algorithm to reduce the dimensionality of the 144

expression matrix and then proceeds by averaging over k-nearest-neighbour graph 145

ensembles to extract pseudotimes. 146

Usually now other methods employ heuristics or additional data about capture times 147

to correct for distances in the extracted landscape. For this, they rely on euclidean 148

distances between cells to overlay the extraction method of pseudo time (usually graphs, 149

on which to go along). For us, we can employ non euclidean distances in the landscape, 150

following the topography of the probabilistic landscape to use in the graph, which can 151

correct for outliers, which will be identified by the landscape’s topography. 152

A Riemannian geometry distorts distances, just as in a real map movement is not 153

equally easy in all directions (it is easier to go down hill or follow roads) the underlying 154

Waddington landscape has a topology which should be respected. Topslam landscapes 155

are both non-linear and probabilistic and we correct, locally, for Riemannian distortions 156

introduced by the non-linear surfaces. In the next section we will show how the 157

combination of these three characteristics allows us to recover pseudotime without 158

reliance on additional data or additional (correctional) algorithms for graph extraction, 159

to correct for the underlying dimensionality reduction technique used. 160

In summary we introduce a probabilistic approach to inferring Waddington 161

landscapes and we consider the topological constraints of that landscape. In the next 162
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Figure 2. Simulated differentiation processes along cell stages. The cell stages are
coloured from 1 to 64 cell stage and each simulation has its associated unique seed printed
underneath. The selection of differentiation processes was done by visual inspection,
strafing for variety and non overlapping profiles, so that a 2 dimensional landscape was
possible.

section we show how this idea can be used to improve pseudotime recovery for single 163

cell data. 164

2 Application: Pseudotime Recovery 165

Single cell gene expression experiments provide unprecedented access to the underlying 166

processes and intrinsic functional relationships of and between cells. However, looking 167

at single cells the extracted gene expression is prone to the heterogeneous variability 168

from cell-to-cell. Such noise is not only technical (such as low amounts of RNA, dropout 169

events etc. [19]), but also biological in origin (heterogeneity between cells of the same 170

type). 171

Each cell is a functioning member of a local community of cells. Biology is based on 172

an evolutionary progression, in which old systems are usually kept in place, when new 173

ones are found. This introduces a lot of redundancies in such processes and makes 174

extraction of information and evidence complex. Therefore, we use dimensionality 175

reduction techniques to optimise and visualise the underlying landscape of the biological 176

process. 177

Epigenetic progression is a discrete process that Waddington suggested could be 178

visualised as part of a continuous landscape. However, the relationship between location 179

on the landscape and the measured state of the cell is unlikely to be linear. 180

Further, when mapping natural landscapes, a laborious process of triangulation 181

through high precision measurements is used to specify the map accurately. In the 182

epigenetic landscape, no such precision is available. As a result it is vital that we sustain 183

an estimate of our uncertainty about the nature of the landscape as we develop the map. 184

2.1 Simulation and Validation 185

Simulation was done by simulating 5 differentiation patterns of cells (Fig. 2). We then 186

extracted pseudotime orderings of the cells in the simulation from 10 repetitions of 187

creating gene expression measurements driven by the simulated differentiation patters 188

(details Supplementary S1). 189

2.1.1 Simulation Results 190

We compare extracted pseudotime orderings of all three methods in Figure 3. Plotted 191

are the linear regression correlation coefficients ρ between simulated and extracted time 192

lines. From the simulation studies we can extract, that we can fully reconstruct the 193

simulated time at an average correlation of approximately 91%[±4%] (Table 1). This is 194
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Figure 3. Simulation study results for gene expression matrices generated from simu-
lated Waddington landscapes along a time line. Shown are linear regression Pearson
correlation coefficients ρ between extracted and simulated time lines. Data sets where
simulated from different differentiation profiles as described in Section S1.

more then 10% higher correlation then the next best method Wanderlust (at 195

78%[±18%]). The construction of Waddington’s landscape ensures an improvement over 196

the other methods in all simulated latent spaces, even if the intrinsic signal structure 197

suits the other methods. Additionally, the consistency of our result is higher across the 198

experiments, providing more reliable results over multiple experiments. 199

The simulation results show, that topslam is robust to repetition and differences in 200

underlying surfaces, whereas the other methods fail in certain circumstances, especially 201

when the underlying differentiation process gets complex (more branching). Thus, it is 202

crucial to account for the topography of the dimensionality reduction technique, before 203

extracting intrinsic signals (such as pseudotime) from the rich phenotypic 204

characterisations of cells. 205

We also show, that we can use topslam to overlay a probabilistic Waddington’s 206

landscape over the other dimensionality reduction techniques. This enables a corrected 207

extraction of pseudotime estimates. This correction is shown to be never detrimental 208

and can increase the correlation between extracted and simulated pseudotimes 209

(Supplementary S1). The supplementary material also contains results for a range of 210

other dimensionality reduction techniques. 211

2.1.2 Running Time 212

Our probabilistic treatment of landscape recovery and our principled correction of the 213

topology mean that topslam is the slowest of the three approaches. The other two 214

methods only apply heuristic corrections, gaining speed in the estimation of intrinsic 215

signal ordering. Topslam averages at approximately 230s of run time to learn the 216

landscape for the simulated 400 − 500 cells. (The number of genes does not play a 217

significant role during optimisation, because of pre-computation of the empirical 218

covariance matrix.) Wanderlust averages at approximately 40s and Monocle at only 5s. 219

However, as we’ve seen this faster compute comes at the expense of a significant loss of 220

both accuracy and consistency. We now turn to deployment of topslam on real data. 221

3 Pseudotime Extraction for Human and Mouse 222

Cells 223

In this section we explore the performance of topslam on to real single cell qPCR 224

(Supplementary S2.1) and single cell RNA-seq (Supplementary S2.2) experiments. This 225

shows the ability for topslam to extract intrinsic signals for existing and difficult single 226
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Figure 4. a Differentiation process along the time graph (endpoints randomly chosen
within respective cell type). These differentiation paths are used for differential gene
expression for marker gene detection. b Some example plots for the marker genes. In
green you can see the individual fits of two GPs, sharing one prior, and in blue the
shared fit of one GP to all the data. Differential expression is decided on which of those
two models (green or blue) fits the data better. Note the time line elucidates when (in
time) the gene can be used as a marker gene. Gata6 is a known marker for TE, but
evidently it is also differentially expressed in mice between PE and EPI differentiation
states.

cell profiling techniques, which can bare difficulties because of high noise corruption and 227

systematic errors (dropouts, detection limit etc.). 228

3.1 Mouse Embryonic Development Landscape 229

We extract the pseudotime for a mouse embryonic single cell qPCR experiment [13,19] 230

of 437 cells, captured from one to 64 cell-state. In this experiment 48 genes where 231

captured. We learn a landscape for the cells progression along time, capturing the 232

differentiation process. The landscape then defines the progression of time by following 233

the valleys of the topography, depicted in Figure 1. 234

Extracting the progression landscape from a qPCR single cell gene expression 235

experiment [14] reveals the time line for the single cell progression in fine grained detail. 236

We extract the landscape for the developmental cells and compute distances along the 237

landscape through an embedded graph. 238

The starting cell needs to be given, whereas no more information is needed to 239

extract the progression of (pseudo-) time along the graph. It is recommended to provide 240

a leaf node in the graph, to ensure only one direction of time along Waddington’s 241

landscape. We can now use the extracted time to infer differing progression of gene 242

expression through the progression of cells. In this particular data set we have a 243

differentiation progress at hand, cells differentiating into three different cell states in the 244

64 cell stage: trophectoderm (TE), epiblast (EPI), and primitive endoderm (PE). 245

We use the same labelling of Guo et al. [14], which introduces some systematic errors 246

(as explained in Section 1.1). With this differentiation, we can now plot gene expression 247

along the landscape, revealing the dynamics of gene expression during differentiation 248

and elucidating differentiation processes within different cell types (Fig. 4). Using the 249

extracted pseudotime for different pathways in the cell stages, we can elucidate the 250

differentiation process along time. We perform differential gene expression detection in 251

time series experiments (e.g. [25]), and use the top ten differentially expressed genes as 252

marker genes for the three cell stages (Table 2). We compiled the list as a comparison 253

between stages, thus if a gene is duplicated in the comparison of stages it is a marker 254

gene for the differentiation of the one stage from the two others (see e.g. for TE Id2, 255

Tspan8). The differentiation takes place in the 16 and 32 cell stages (Figure 4). Having 256

the time series as differential expressed marker genes, we can plot the exact time line of 257

when genes get differentially expressed along pseudo time (Figure 4). 258

Comparison with results using other dimensionality reduction techniques, show that 259

the other methods are not able to capture the non-linearities in the data (topslam is our 260

method, Figure 5). We can also see the representation of Waddington’s landscape as 261
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Figure 5. Comparison plots between different dimensionality reduction techniques for
the Guo et al. data set of developmental mouse embryonic stem cells [14]. As can be seen,
only topslam (probabilistic Waddington landscape) can fully identify the relationships
between the cells and order them correctly for pseudo time extraction. t-SNE is the
underlying method Wanderlust relies on and ICA the one for Monocle.

shaded area, we want to stay in light areas. 262

Using the probabilistic interpretation of Waddington’s landscape as a correction for 263

the embedding and extraction techniques, we can extract pseudotime information more 264

clearly and without additional information to ensure the time line extracted corresponds 265

to the cell stages as seen in Guo et al. [14]. 266

3.2 Monoallelic Mouse Embryonic Landscape 267

Deng et al. [8] perform an exploratory single cell RNA-seq experiment for allele specific 268

gene expression. They find significant differences between paternal and maternal 269

developmental development in split-cell experiments (see [8] for details). Performing a 270

PCA on the extracted Gene Expression Experiment reveals the overall time structure 271

from oocyte to blastocyst. However, PCA fails to recover the differences in monoallelic 272

expression (See PCA in Figure 6). 273

Generating a probabilistic Waddington’s landscape for this experiment not only 274

reveals the dynamics of overall pre-implantation development, but also it enables us to 275

distinguish between split-cells and others (Fig. 7). Suggestively there may also be a 276

closer relationship between the split-cells and adult cells, although given that similarity 277

with early development cells is unlikely to be great, that conclusion should be treated 278

with some caution. 279

Again, the probabilistic representation of Waddington’s landscape reveals a detailed 280

description of the cells developmental progression. It picks out sub populations in the 281

cells, which were not visible by other dimensionality reduction techniques (Figure 7). 282

3.3 Human Developmental Landscape 283

In this experiment Yan et al. [34] looked for connections between human embryonic 284

stem cell gene expression and pre-implantation embryo gene expression. We use the 285

data set to show the embryonic developmental landscape in humans, by extracting the 286
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Figure 6. Comparing different dimensionality reduction techniques applied to the
pre-implantation developmental gene expression experiment from Deng et al. [8]. Again,
you can see that the other methods struggle to reveal the underlying structure of the
experiment. A split-cell experiment was performed, depicted with an ‘s’ attached to the
label (8s and 16s). Additionally, fibroblasts (F) and liver cells (L) where measured and
are included in the time line here.
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Figure 7. The pseudo time extracted by the probabilistic handling of Waddington’s
landscape from monoallelic embryonic stem cells from oocyte to blastocyst. A split-cell
experiment was performed, depicted with an ‘s’ attached to the label (8s and 16s).
Additionally, fibroblasts (F) and liver cells (L) where measured and are included in
the time line here. They appear to be closer to the split-cells, though this could be an
artefact of the huge time line difference between cells. The shading shows Waddington’s
landscape as grey scales, from dark (un-favoured) to light (favoured).
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anaphase­promoting complex­dependent catabolic process 1. 10× 10−07

single­organism process 2. 45× 10−07
cellular component organization 2. 45× 10−07
cellular process 2. 45× 10−07

cytoplasmic translation 1. 33× 10−08
ribosomal small subunit biogenesis 1. 33× 10−08
establishment of protein localization to endoplasmic reticulum 1. 33× 10−08

gene expression 5. 75× 10−08
mRNA transport 5. 75× 10−08
regulation of RNA splicing 5. 75× 10−08

chromosome organization 8. 48× 10−08
RNA processing 8. 48× 10−08
cell cycle process 8. 48× 10−08

intracellular organelle part 1. 29× 10−06
macromolecular complex 1. 29× 10−06
RNA binding 1. 29× 10−06

nuclear export 5. 98× 10−08
RNA transport 5. 98× 10−08
nucleic acid transport 5. 98× 10−08

mitochondrial respiratory chain complex I assembly 1. 49× 10−08
mitochondrial respiratory chain complex I biogenesis 1. 49× 10−08
NADH dehydrogenase complex assembly 1. 49× 10−08

protein modification by small protein conjugation or removal 2. 10× 10−07
cellular protein modification process 2. 10× 10−07
protein modification process 2. 10× 10−07

intracellular part 4. 38× 10−04
cell part 3. 92× 10−02
molecular_function 3. 92× 10−02

RNA splicing, via transesterification reactions 8. 18× 10−08
RNA splicing 8. 18× 10−08
mRNA metabolic process 8. 18× 10−08

integral component of plasma membrane 6. 18× 10−03
intrinsic component of plasma membrane 6. 59× 10−03
immune response 1. 59× 10−02

Figure 8. Clusters extracted using Hensman et al. [15] from human embryonic stem
cell gene expression. The number of genes matching the clusters is shown in the north
east of each subplot. Each subplot shows one cluster mean (thick line) and variance
(shaded area). Here the genes are all genes, fully observed in the data set. In the top we
see the colouring for the cell stages along the time line. The right shows the top 3 gene
ontology associations and their Benjamini-Hochberg corrected p-values.

probabilistic representation of Waddington’s landscape of the one cell state, through the 287

late blastocyst stage to human Embryonic Stem Cells (hESC). 288

Again, comparing our representation to other dimensionality reduction techniques 289

(Fig. S11) reveals the ability of the probabilistic modelling to capture the underlying 290

time structure of the cells. (Heavy filtering was done to select only highly variable 291

genes, this removed the very large number of dropout events and low expressed genes 292

(See supplementary material S4.2,S1).) 293

We extract the landscape and pseudotimes along the graph (Fig. S10). This enables 294

us to consider other analyses such as time-series clustering [15]. Such studies could 295

further unravel processes on a genetic level.1 To validate the clusters we performed a 296

gene ontology association study shown on the right of the cluster distributions (Fig. 8). 297

These clusters are referring to the hESC cells as a follow up stage after the late 298

blastocyst, as the topography of the Waddington landscape suggests. 299

The gene ontology associations show that the hESC cell stage genes are up regulated 300

towards ribosomal activity and RNA activity. Genes up regulated towards the end of 301

the pre-implantation cell stages (late blastocyst) are associated with RNA splicing and 302

mRNA metabolic processes. We used the goatools toolbox to perform the gene ontology 303

analysis [34]. With topslam we are able to resemble results found in Yan et al. [34], 304

1This clustering is performed on the non-filtered genes.
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SLS8971 SLS3551 SLS3279 SLS5001 SLS5081

Monocle 0.73±0.26 0.90±0.07 0.63±0.30 0.61±0.11 0.70±0.20
Wanderlust 0.92±0.01 0.91±0.05 0.84±0.14 0.65±0.10 0.60±0.21
topslam 0.92±0.02 0.93±0.01 0.85±0.03 0.91±0.03 0.94±0.01

Table 1. Simulation results for extracting pseudotime orderings using Monocle, Wan-
derlust and topslam. Results are shown as mean and standard deviation of Pearson
correlation coefficient ρ between estimated and simulated times for all 5 simulations and
over 10 repetitions.

TE EPI PE EPI TE PE

Id2 Fgf4 Pdgfra
Fgf4 Runx1 Id2
Bmp4 Fgfr2 Gata4
Pecam1 Gata6 DppaI
Sox2 Pdgfra Tspan8
DppaI Klf2 Atp12a
Fn1 Bmp4 Pecam1
Klf4 Gata4 Fn1
Fgfr2 Nanog Creb312
Tspan8 Sox2 Runx1

Table 2. Marker genes for differentiation between the tree cell stages compiled from time
series differential expression along the pseudotime. Shown are the ten most differentially
expressed genes, pairwise between the three stages. For example Id2 is differentially
expressed between (TE and EPI) and between (TE and PE). This means it is a marker
gene for TE, as it behaves differently from the two other differentiation stages, but not
within the two others. Id2 is known to be a marker for TE.

without the need for additional statistical filtering, such as anova or mean analysis. We 305

are able to directly model the connection between time and genes employing 306

probabilistic correction and modelling. This gives the advantage of providing more 307

power, as more data points can be employed in the analysis. 308

Using topslam allows us to extract an actual time line along which we can do further 309

studies. We do not have to employ binning procedures, which can introduce systematic 310

errors and reduce statistical power. 311

4 Conclusion 312

We have introduced a probabilistic approach to inferring Waddington landscapes. We 313

use rich phenotype information to characterise the landscape and probabilistic inference 314

techniques to infer a non-linear mapping from the landscape to the phenotype. Our 315

approach allows us to respect the topology of the landscape when extracting distances 316

and we show the advantages of this idea when reconstructing pseudotimes from single 317

cell data. Summarising single cells in this manner represents a powerful approach for 318

understanding the evolution of their genetic profile, a critical stage in understanding 319

development and cancer. 320
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5 Methods 321

5.1 Data 322

For description of single cell transcriptome extraction techniques please refer to supplementary material 323

S2. 324

5.2 Code 325

A package topslam written in python (based on GPy [12]) is provided for users to apply the methods 326

described in this work. 327

https://github.com/mzwiessele/topslam 328

We supply all topslam correction methods in this package, including different graph extraction 329

techniques. Additionally, we supply optimisation routines for the dimensionality reduction technique. 330

For you convenience we include plotting routines and data filtering methods alongside the package. 331

5.3 Extracting Pseudotime 332

The most common way of extracting pseudotime orderings is done with the following stages: 333

1. Extract lower dimensional representation X ∈ Rn×q of gene expression matrix Y ∈ Rn×d with n 334

samples as rows and d genes as columns. The lower dimensional representation is often chosen to 335

have q = 2 dimensions, as the dimensionality reduction techniques do not express a selection 336

criterion and two dimensions are convenient for visualisation. 337

2. Supply starting point s ∈X of pseudotime ordering extracted in the next step. 338

3. Extract distance information about cells by following the landscape by a graph structure, 339

sometimes a tree, or k-nearest-neighbour graph. 340

4. Extract the ordering of cells along the graph structure extracted in the above step (including 341

smoothing, branch detection, and/or clustering). 342

5.3.1 Topslam Approach 343

Crucially standard approaches each miss at least one important component of the mapping problem. 344

Monocle assumes a linear map, a highly unrealistic assumption. Wanderlust [1] makes use of a 345

non-linear method but does not consider the topography of the map when developing pseudotime 346

orderings. The topography of the epigenetic landscape influences distances between cells on the 347

landscape, and therefore their effective relative positions to each other. 348

Our approach, a topologically corrected simultaneous localisation and mapping of cells, topslam, 349

proposes to make use of a probabilistic non-linear dimensionality reduction technique, also used in 350

many other single cell transcriptomics applications [3–5,21]. The probabilistic nature of the 351

dimensionality reduction technique is used for extracting the Waddington landscapes with associated 352

uncertainties. Further, we are able to take account of the local topography when extracting 353

pseudotimes, correcting distances by applying non euclidean metrics along the landscape [29]. 354

To perform pseudotime extraction with topslam we build a minimum spanning tree (or 355

k-nearest-neighbour graph) along the latent landscape uncovered by topslam. This allows the spanning 356

tree to naturally follow the landscape topography and makes any corrections post extraction obsolete. 357

For a more detailed description of the approach see supplementary material [S3,S4]. 358
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