Appendix A: Speed comparison for negative binomial GLMMs

Mollie Brooks
2017-05-01

These supplementary figures and tables present benchmarking that was done using the Salamander data that was analyzed in appendix A (Price et al. 2016; Price et al. 2015). We compare the timing of functions \texttt{glmmTMB}, \texttt{glmmadmb}, \texttt{glmer.nb}, \texttt{brm}, and \texttt{inla} (Skaug et al. 2012; Bates et al. 2015; Bürkner in press; Rue, Martino, and Chopin 2009). We used the defaults of each function. However, it would be possible to speed up \texttt{brm} by saving the compiled C++ file or using multiple computing cores; it would be possible to speed up \texttt{inla} by giving it access to more cores.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{Estimation times for fitting models to 100 simulated data sets using functions \texttt{glmmTMB}, \texttt{glmmadmb}, \texttt{glmer.nb}, \texttt{brm}, and \texttt{inla}. The estimated model was identical to the model used for simulation and can be represented as \texttt{glmmTMB(count ~ spp * mined + (1|site), Salamanders, family="nbinom2").} }
\end{figure}
Figure A.2 - The Salamander data set was replicated by 1, 2, 4, 6, 8, and 10 times to create larger data sets. The time required to fit the same model using functions `glmmTMB`, `glmmADMB`, `glmer.nb`, `brm`, and `inla` was recorded. That model can be represented as `glmmTMB(count ~ spp * mined + (1|site), Salamanders, family="nbinom2")`. All models had the same number of parameters including random effect levels.
Figure A.3 - Data sets with increasing numbers of levels of the random effect were simulated based on
the most parsimonious model fit to the salamander data, `glmmTMB(count ~ spp * mined + (1|site),
Salamanders, family="nbinom2")`. The time required to fit the same model using functions `glmmTMB`,
`glmmADMB`, `glmer.nb`, `brm`, and `inla` was recorded. Each simulated data set had the same number of
observations per random effect level — the same ratio as in the original data.

References

Bürkner, Paul-Christian. in press. “brms: An R Package for Bayesian Multilevel Models Using Stan.” Journal of
Statistical Software.

Removal Mining and Valley Filling on the Occupancy and Abundance of Stream Salamanders.” Journal of

Rue, Håvard, Sara Martino, and Nicolas Chopin. 2009. “Approximate Bayesian Inference for Latent Gaussian
B (Statistical Methodology) 71 (2). Wiley Online Library: 319–92.

Mixed Models Using AD Model Builder.