Neurospora crassa trait models

Kolea Zimmerman

Kolea Zimmerman

14 September, 2015

- Load packages
- Additional functions
 - Deviance calculation for qAIC
 - R2GLMM
 - Mean Center
- Data import and processing
 - Import data
 - Calculations used to infer the number of ascospores and conidia in germinated samples.
 - Create data variables for models (except spore size).
- Trait Heatmaps
 - Data processing
 - Perithecia Count
 - Total Spore Count
 - Percent Pigmented
 - Pigmented Spore Size
 - Pigmented Spore Germination
- Trait Correlogram
 - Supplementary Figure 4
- Model Perithecia Count
 - Full Model
 - Calculate qAIC
 - Selected Model
 - R2GLMM of selected model.
 - Variance of maternal vs. paternal random effect coefficients (BLUPs) of selected model
 - Correlation between maternal and paternal BLUPs of selected model
- Model Total Ascospore Count
 - Full Model
 - Calculate qAIC
 - Selected Model
 - R2GLMM of selected model.
 - Variance of maternal vs. paternal random effect coefficients (BLUPs) of selected model
 - Correlation between maternal and paternal BLUPs of selected model
• Model Proportion Pigmented
 – Full Model
 – Calculate qAIC
 – Selected Model
 – R2GLMM of selected model.
 – Variance of maternal vs. paternal random effect coefficients (BLUPs) of selected model
 – Correlation between maternal and paternal BLUPs of selected model

• Model Pigmented Spore Size
 – Full Model
 – Calculate AIC
 – Selected Model
 – R2GLMM of selected model.
 – Variance of maternal vs. paternal random effect coefficients (BLUPs) of selected model
 – Correlation between maternal and paternal BLUPs of selected model

• Model Pigmented Spore Germination
 – Full Model
 – Calculate qAIC
 – Selected Model
 – R2GLMM of selected model.
 – Variance of maternal vs. paternal random effect coefficients (BLUPs) of selected model
 – Correlation between maternal and paternal BLUPs of selected model

• Plot variance explained by models
• Plot maternal and paternal proportions of random effect variance
• Plot of maternal vs paternal BLUPs
• HPD intervals for parameters
 – MCMC parameter estimation
 * Perithecia Count
 * Spore Count
 * Proportion Pigmented
 * Pigmented Size
 * Pigmented Spore Germination
 – Plot parameters and HPD intervals

This document shows the GLMM analysis used in the paper.

Load packages

ipak function: install and load multiple R packages (Steve Worthington https://gist.github.com/stevenworthington/3178163)

```
#install.packages("glmmADMB", repos=c("http://glmmadmb.r-forge.r-project.org/repos",
#getOption("repos")), type="source")

ipak <- function(pkg){
  new.pkg <- pkg[!(pkg %in% installed.packages()[, "Package"])]
  if (length(new.pkg))
    install.packages(new.pkg, repos="http://cran.us.r-project.org", dependencies = TRUE)
  sapply(pkg, require, character.only = TRUE)
```
packages <- c("glmmADMB", "lme4", "plyr",
 "ggplot2", "reshape", "car",
 "MuMIn", "R2admb", "corrgram", "grid")

ipak(packages)

glmmADMB lme4 plyr ggplot2 reshape car MuMIn R2admb
TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
corrgram grid
TRUE TRUE

Additional functions

Deviance calculation for qAIC

```r
#function to calculate deviance for quasi AIC, used in 'chat' arg of qAIC
#calculations see https://cran.r-project.org/web/packages/bbmle/vignettes/quasi.pdf
dfun <- function(object) {
    MM<--Anova(object)
    df_residuals<-max(MM$Df)
    res<--residuals(object)
    res[is.na(res)==T]<-0
    return(sum(1 * res^2)/df_residuals)
}
```

R2GLMM

```r
#function to calculate R2glmm
glmmadmbR2 <- function (model, offset=TRUE, spec_os, err_dist) {
    # Determines the marginal and conditional R2glmm described in:
    # for a glmmADMB model using a negative binomial or gaussian error distribution,
    # with an option for specifying an offset if it is used in the model.
    #
    # Args:
    # model: Full glmmADMB model object.
    # offset: Logical indicating whether the model includes an offset.
    # spec_os: A string specifying the offset as specified in the full model.
    # err_dist: A string specifying either "nbinom" for negative binomial or
    #    "gaussian" for gaussian.
    #
    # Returns:
    # List containing the conditional "R2c" and marginal "R2m" R2glmm values.
    #
    # Reformulate the full model to include only random effects and offset if
    # offset = TRUE, or just the random effects if offset = FALSE. Some code
```
if(offset==TRUE){
 parens <- function(x) paste0("(", x, ")")
 onlyBars <- function(form) reformulate(c(sapply(findbars(form),
 function(x) parens(deparse(x)),
 spec_os),
 response=".")
 null_model <- update(model, onlyBars(formula(model))))
} else {
 parens <- function(x) paste0("(" , x, ")")
 onlyBars <- function(form) reformulate(sapply(findbars(form),
 function(x) parens(deparse(x)),
 response=".")
 null_model <- update(model, onlyBars(formula(model))))
}

dm_M <- model.matrix(model)

Fixed <- vector("list", length(fixef(model)) - 1)

for(i in 2:length(fixef(model))){
 Fixed[[i-1]] <- fixef(model)[[i]] * dm_M[, i]
}

Fixed <- Reduce("+", Fixed)

VarF <- var(Fixed)

VarR <- vector("list", length(ranef(model)))

for(i in 1:length(ranef(model))){
 VarR[[i]] <- VarCorr(model)[[i]][1]
}

VarR <- Reduce("+", VarR)

if(err_dist == "nbinom"){
 R2m <- VarF/(VarF + VarR + log(model$alpha) *
 log(1 + 1/exp(as.numeric(fixef(null_model)) +
 1/as.numeric(model$alpha)))
 R2c <- (VarF + VarR)/
 (VarF + VarR + log(model$alpha) *
 log(1 + 1/exp(as.numeric(fixef(null_model)) +
 1/as.numeric(model$alpha)))

 R2 <- list()
 R2$R2m <- R2m
 R2$R2c <- R2c
 return(R2)
} else{
 R2m <- VarF/(VarF + VarR + model$alpha)
 R2c <- (VarF + VarR)/(VarF + VarR + model$alpha)

 R2 <- list()
 R2$R2m <- R2m
 R2$R2c <- R2c

 return(R2)
}
return(R2)
}
}

Mean Center

mean_center <- function(x) {
 (x-mean(x))/sd(x)
}

Data import and processing

Import data

ndata <- read.csv("ncrassa_maternal_effects_data.csv", stringsAsFactors = F)

Calculations used to infer the number of ascospores and conidia in germinated samples.

#total particle count (beads, conidia, ascospores, outliers) in the germinated samples

g.total <- ndata$g_total_count

g.beads<-ndata$g_beads_count #fluorescent beads in the germinated samples

g.germinated <- ndata$g_germinated_count #count of germinated ascospores in germinated sample

g.asco.conidia<-g.total-g.beads #count of particles that are not beads (ascospores and conidia)

a.total <- ndata$Cfreq + ndata$Hfreq + ndata$Pfreq + ndata$Ofreq
a.conidia <- ndata$Cfreq
a.hyaline <- ndata$Hfreq
a.pigmented <- ndata$Pfreq
a.outliers <- ndata$Ofreq

#add columns to "ndata" data frame for the percentage of conidia, beads, hyaline ascospores, pigmented ascospores, and outlier particles in the samples

ndata$a.percent.conidia <- a.conidia / a.total
ndata$a.percent.hyaline <- a.hyaline / a.total
ndata$a.percent.pigmented <- a.pigmented / a.total
ndata$a.percent.outliers <- a.outliers / a.total

calculate mean particle percentages for each cross (mean of 4 replicates per cross)
ndata1 <- ddply(ndata,
 .(FEMALE, MALE),
 transform,
 mean.a.percent.conida = mean(na.omit(a.percent.conidia)),
 mean.a.percent.hyaline = mean(na.omit(a.percent.hyaline)),
 mean.a.percent.pigmented = mean(na.omit(a.percent.pigmented)),
 mean.a.percent.outliers = mean(na.omit(a.percent.outliers)))
calculate the number of pigmented ascospores, hyaline ascospores, conidia,
and outlier particles in the germinated samples using the percentages from
the ungerminated samples. Note, g.asco.conidia and g.germinated need to be
reassigned because ddply rearranges dataframe.

g.asco.conidia <- ndata1$g_total_count - ndata1$g_beads_count

percent germinated spores for trait correlogram
ndata1$percent.germinated <- g.germinated/(g.pigmented+g.germinated)

Create data variables for models (except spore size).

perithecia_count <- ndata1$Perithecia_count
pigmented_count <- ndata1$Pfreq
bead_count <- ndata1$Bfreq
pigmented_count_std <- ndata1$Pfreq / ndata1$TIME
percent_pigmented <- ndata1$Pfreq / (ndata1$Pfreq + ndata1$Hfreq) # used in trait correlogram
pigmented_size <- ndata1$PSSCWmean / ndata1$BSSCWmean

Trait Heatmaps

Data processing

seven_variables <- data.frame(ma, pa, matFemale, matMale, perithecia_count, total_ascospores_std, percent_pigmented, pigmented_size, perc.germinated)
perithecia_count = mean(na.omit(perithecia_count)),
asco_count = mean(na.omit(total_ascospores_std)),
percent_pigmented = mean(na.omit(percent_pigmented)),
pigmented_size = mean(na.omit(pigmented_size)),
person_germinated = mean(na.omit(perc_germinated))

mean_traits_s <- mean_traits[with(mean_traits, order(matFemale)),]
mean_traits_s$sma <- factor(mean_traits_s$sma, levels=unique(as.character(mean_traits_s$sma)))
mean_traits_s$s(pa <- factor(mean_traits_s$spa, levels=unique(as.character(mean_traits_s$spa)))

mean_traits_sA <- subset(mean_traits_s, matFemale == "A")
mean_traits_sa <- subset(mean_traits_s, matFemale == "a")

Perithecia Count

sfg_perithecia <- c(min(mean_traits_s$perithecia_count, na.rm = T),
max(mean_traits_s$perithecia_count, na.rm = T))

#mat-A Mother
ggplot(mean_traits_sA, aes(ma, pa)) +
 geom_tile(aes(fill = perithecia_count), colour = "black") +
 scale_fill_gradient(low = "orange", high = "dark blue",
 limits = sfg_perithecia, trans = "sqrt",
 breaks = as.integer(c(200, 400, 600, 800, mean(na.omit(perithecia_count)))))+
 xlab(label = "Mother (mat-A)") +
 ylab(label = "Father (mat-a)") +
 labs(fill = "Perithecia\nCount") +
 theme_bw()+
 theme(axis.text.x=element_text(angle = 45, hjust=1, vjust=1))
```r
ggsave("bigA_perithecia_new.pdf", height = 3, width = 4)

# mat-a mother

ggplot(mean_traits_sa, aes(pa, ma)) +
  geom_tile(aes(fill = perithecia_count), colour = "black") +
  scale_fill_gradient(low = "orange", high = "dark blue",
                     limits = sfg_perithecia, trans = "sqrt",
                     breaks = as.integer(c(200, 400, 600, 800, mean(na.omit(perithecia_count))))) +
  xlab(label = "Father (mat-A)") +
  ylab(label = "Mother (mat-a)") +
  labs(fill = "Perithecia\nCount") +
  theme_bw() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1, vjust = 1))
```
Total Spore Count

sfg_ascospore <- c(min(mean_traits_s$asco_count, na.rm = T),
 max(mean_traits_s$asco_count, na.rm = T))

mat-A mother
ggplot(mean_traits_sA, aes(ma, pa)) +
 geom_tile(aes(fill = asco_count), colour = "black") +
 scale_fill_gradient(low = "orange", high = "dark blue",
 limits = sfg_ascospore, trans = "sqrt",
 breaks = as.integer(c(0, 100, 200, 300, mean(na.omit(total_ascospores_std)))))+
 xlab(label = "Mother (mat-A)") +
 ylab(label = "Father (mat-a)") +
 labs(fill = "Ascospore\nCount") +
 theme_bw()+
 theme(axis.text.x=element_text(angle = 45, hjust=1, vjust=1))
```
#mat-a mother

ggplot(mean_traits_sa, aes(pa, ma)) +
  geom_tile(aes(fill = asco_count), colour = "black") +
  scale_fill_gradient(low = "orange", high = "dark blue",
                     limits = sfg_ascospore, trans = "sqrt",
                     breaks = as.integer(c(0, 100, 200, 300, mean(na.omit(total_ascospores_std))))) +
  xlab(label = "Father (mat-A)") +
  ylab(label = "Mother (mat-a)") +
  labs(fill = "Ascospore\nCount") +
  theme_bw() +
  theme(axis.text.x=element_text(angle = 45, hjust=1, vjust=1))
```
Percent Pigmented

```r
sfg_perc_pig <- c(min(mean_traits_s$percent_pigmented, na.rm = T),
                   max(mean_traits_s$percent_pigmented, na.rm = T))

# mat-A mother
ggplot(mean_traits_sA, aes(ma, pa)) +
  geom_tile(aes(fill = percent_pigmented), colour = "black") +
  scale_fill_gradient(low = "orange", high = "dark blue",
                     limits = sfg_perc_pig, breaks = c(.25, .50, .75, round(mean(na.omit(percent_pigmented)), 2)))+
  xlab(label = "Mother (mat-A)") +
  ylab(label = "Father (mat-a)") +
  labs(fill = "Proportion\nPigmented") +
  theme_bw()+
  theme(axis.text.x=element_text(angle = 45, hjust=1, vjust=1))
```
ggsave("BigA_Perc_Pigmented_new.pdf", height = 3, width = 4)

#mat-a mother

ggplot(mean_traits_sa, aes(pa, ma)) +
 geom_tile(aes(fill = percent_pigmented), colour = "black") +
 scale_fill_gradient(low = "orange", high = "dark blue",
 limits = sfg_perc_pig,
 breaks = c(.25, .50, .75, round(mean(na.omit(percent_pigmented)), 2)))+
 xlab(label = "Father (mat-A)") +
 ylab(label = "Mother (mat-a)") +
 labs(fill = "Proportion\nPigmented") +
 theme_bw()+
 theme(axis.text.x=element_text(angle = 45, hjust=1, vjust=1))

Pigmented Spore Size

sfg_pigsize <- c(min(mean_traits_s$pigmented_size, na.rm = T),
 max(mean_traits_s$pigmented_size, na.rm = T))

#mat-A mother
ggplot(mean_traits_sA, aes(ma, pa)) +
 geom_tile(aes(fill = pigmented_size), colour = "black") +
 scale_fill_gradient(low = "orange", high = "dark blue",
 limits = sfg_pigsize,
 breaks = c(1.7, 1.9, 2.1, round(mean(na.omit(pigmented_size)), 1))) +
 xlab(label = "Mother (mat-A)") +
 ylab(label = "Father (mat-a)") +
 labs(fill = "Pigmented\nSpore Size") +
 theme_bw() +
 theme(axis.text.x=element_text(angle = 45, hjust=1, vjust=1))
```r
#mat-a mother
ggplot(mean_traits_sa, aes(pa, ma)) +
  geom_tile(aes(fill = pigmented_size), colour = "black") +
  scale_fill_gradient(low = "orange", high = "dark blue",
                     limits = sfg_pigsize,
                     breaks = c(1.7, 1.9, 2.1, round(mean(na.omit(pigmented_size)), 1)))+
  xlab(label = "Father (mat-A)") +
  ylab(label = "Mother (mat-a)") +
  labs(fill = "Pigmented
Spore Size") +
  theme_bw()+
  theme(axis.text.x=element_text(angle = 45, hjust=1, vjust=1))
```
Pigmented Spore Germination

sfg_germ <- c(min(mean_traits_s$percent_germinated, na.rm = T),
 max(mean_traits_s$percent_germinated, na.rm = T))

#mat-A mother
ggplot(mean_traits_sA, aes(ma, pa)) +
 geom_tile(aes(fill = percent_germinated), colour = "black") +
 scale_fill_gradient(low = "orange", high = "dark blue",
 limits = sfg_germ, trans = "sqrt",
 breaks = c(.25, .5, .75, round(mean(na.omit(perc_germinated)), 2)))+
 xlab(label = "Mother (mat-A)") +
 ylab(label = "Father (mat-a)") +
 labs(fill = "Proportion\nGerminated") +
 theme_bw()+
 theme(axis.text.x=element_text(angle = 45, hjust=1, vjust=1))
ggsave("BigA_spore_germination_new.pdf", height = 3, width = 4)

#mat-a mother
ggplot(mean_traits_sa, aes(pa, ma)) +
geom_tile(aes(fill = percent_germinated), colour = "black") +
scale_fill_gradient(low = "orange", high = "dark blue",
limits = sfg_germ, trans = "sqrt",
breaks = c(.25, .5, .75, round(mean(na.omit(perc_germinated)), 2)))+
 xlab(label = "Father (mat-A)") +
 ylab(label = "Mother (mat-a)") +
 labs(fill = "Proportion\nGerminated") +
 theme_bw() +
 theme(axis.text.x=element_text(angle = 45, hjust=1, vjust=1))
Trait Correlogram

Supplementary Figure 4

```r
five_variables <- data.frame(
  perc_germinated, 
  pigmented_size, 
  percent_pigmented, 
  total_ascospores_std, 
  perithecia_count)

colnames(five_variables) <- c("Pigmented\nSpore\nGermination", 
  "Pigmented\nSpore Size", 
  "Proportion\nPigmented", 
  "Spore\nCount", 
  "Perithecia\nCount")

five_variables_complete <- five_variables[complete.cases(five_variables), ]

corrgram(five_variables_complete, 
  order=F, 
  upper.panel=panel.pts, 
  lower.panel=panel.conf, 
  pch=".")
```
Model Perithecia Count

Full Model

```r
perithecia_data <- data.frame(geo = mean_center(geo),
    geo_sq = mean_center(geo)^2,
    gen_dis = mean_center(gen_dis),
    gen_dis_sq = mean_center(gen_dis)^2,
    ma = ma,
    pa = pa,
    perithecia_count = perithecia_count)
perithecia_data <- perithecia_data[complete.cases(perithecia_data),]
```
#define model
MP1_perithecia <- glmmadmb(formula = perithecia_count ~
geo_sq +
gen_dis*geo +
gen_dis_sq +
(1 | ma) +
(1 | pa),
data = perithecia_data,
zeroInflation = FALSE,
family = "nbinom")

summary(MP1_perithecia)

Call:
glmmadmb(formula = perithecia_count ~ geo_sq + gen_dis * geo +
gen_dis_sq + (1 | ma) + (1 | pa), data = perithecia_data,
family = "nbinom", zeroInflation = FALSE)
##
AIC: 10525.4
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 5.5066 0.1393 39.53 <2e-16 ***
geo_sq -0.0244 0.0164 -1.49 0.136
gen_dis 0.0641 0.0378 1.69 0.090 .
geo 0.0312 0.0347 0.90 0.368
gen_dis_sq 0.0371 0.0155 2.39 0.017 *
gen_dis:geo -0.0015 0.0256 -0.06 0.953
##
Number of observations: total=884, ma=21, pa=21
Random effect variance(s):
Group=ma
Variance StdDev
(Intercept) 0.3606 0.6005
Group=pa
Variance StdDev
(Intercept) 0.0316 0.1779
##
Negative binomial dispersion parameter: 8.5772 (std. err.: 0.42802)
##
Log-likelihood: -5253.71

Calculate qAIC

chat <- dfun(MP1_perithecia)
dredge_MP1_perithecia <- dredge(MP1_perithecia, rank = "QAI C", chat = chat)

Fixed term is "(Intercept)"

head(dredge_MP1_perithecia)
Global model call: glmmadmb(formula = perithecia_count ~ geo_sq + gen_dis +
gen_dis_sq + (1 | ma) + (1 | pa), data = perithecia_data,
family = "nbinom", zeroInflation = FALSE)

Model selection table
(Int) gen_dis gen_dis_sq geo geo_sq gen_dis:geo df logLik
4 5.478 0.08491 0.04089 6 -5254.84
12 5.495 0.07996 0.04014 -0.01657 7 -5254.13
16 5.507 0.06475 0.03688 0.03134 8 -5253.72
8 5.479 0.08327 0.04052 0.00403 7 -5254.83
15 5.540 0.01392 0.06002 -0.03448 7 -5255.32
32 5.507 0.06411 0.03712 0.03120 -0.02439 -0.001491 9 -5253.71
QAIC delta weight
4 10521.7 0.00 0.343
12 10522.3 0.58 0.257
16 10523.4 1.76 0.142
8 10523.7 1.98 0.127
15 10524.6 2.96 0.078
32 10525.4 3.74 0.053
Models ranked by QAIC(x, chat = 0.957642499870479)
Random terms (all models):
'1 | ma', '1 | pa'

Selected Model

#qAIC includes only gen and gen_dis_sq
MP1_perithecia <- glmmadmb(formula = perithecia_count ~
 gen_dis +
 gen_dis_sq +
 (1 | ma) +
 (1 | pa),
 data = perithecia_data,
 zeroInflation = FALSE,
 family = "nbinom")

summary(MP1_perithecia)

##
Call:
glmmadmb(formula = perithecia_count ~ gen_dis +
gen_dis_sq +
(1 | ma) +
(1 | pa),
data = perithecia_data, family = "nbinom",
zeroInflation = FALSE)
##
AIC: 10521.7
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 5.4782 0.1373 39.89 <2e-16 ***
gen_dis 0.0849 0.0319 2.66 0.0078 **
gen_dis_sq 0.0409 0.0146 2.81 0.0050 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Number of observations: total=884, ma=21, pa=21
Random effect variance(s):
Group=ma
Variance StdDev
(Intercept) 0.3566 0.5972
Group=pa
Variance StdDev
(Intercept) 0.03172 0.1781
##
Negative binomial dispersion parameter: 8.5522 (std. err.: 0.42667)
##
Log-likelihood: -5254.84

R2GLMM of selected model.

R2m is the marginal (fixed effects) R2glmm value and R2c is the conditional R2glmm value (fixed + random effects)

```r
perithecia_R2glmm <- glmmadmbR2(model = MP1_perithecia,
                                 offset = FALSE,
                                 err_dist = "nbinom")
print(perithecia_R2glmm)
```

```
## $R2m
## [1] 0.00517726
##
## $R2c
## [1] 0.6151382
```

Variance of maternal vs. paternal random effect coefficients (BLUPs) of selected model

```r
MP1_perithecia_ranef <- ranef(MP1_perithecia)

r.pa.peri <- MP1_perithecia_ranef$pa  # paternal random effect coefficients
r.ma.peri <- MP1_perithecia_ranef$ma  # maternal random effect coefficients

var.test(r.pa.peri, r.ma.peri)
```

```
##
## F test to compare two variances
##
## data:  r.pa.peri and r.ma.peri
## F = 0.0756, num df = 20, denom df = 20, p-value = 3.004e-07
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.03067471 0.18630844
## sample estimates:
## ratio of variances
## 0.07559733
```
Correlation between maternal and paternal BLUPs of selected model

```r
lm_ranef_peri <- lm(r.pa.peri ~ r.ma.peri)
summary(lm_ranef_peri)
```

```
##
## Call:
## lm(formula = r.pa.peri ~ r.ma.peri)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.28432 -0.11600 -0.06087 0.13873 0.30559
##
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0001478  0.0372401 -0.004 0.997
## r.ma.peri   0.0225548  0.0628652  0.359 0.724
##
## Residual standard error: 0.1707 on 19 degrees of freedom
## Multiple R-squared: 0.006729, Adjusted R-squared: -0.04555
## F-statistic: 0.1287 on 1 and 19 DF, p-value: 0.7237
```

Model Total Ascospore Count

Full Model

```r
scd <- data.frame(logtime, geo, gen_dis, ma, pa, total_char_ascospores, bead_count)

scd$bead_count[scd$bead_count==0] <- NA
scd <- scd[complete.cases(scd), ]
spore_count_data <- data.frame(logtime = scd$logtime, 
geo = mean_center(scd$geo), 
geo_sq = mean_center(scd$geo)^2, 
gen_dis = mean_center(scd$gen_dis), 
gen_dis_sq = mean_center(scd$gen_dis)^2, 
ma = scd$ma, 
pa = scd$pa, 
total_char_ascospores = scd$total_char_ascospores)

MP1_noff <- glmmadmb(formula = total_char_ascospores ~ 
geo_sq + 
gen_dis*geo + 
gen_dis_sq + 
(1 | ma) + 
(1 | pa) + 
offset(logtime),
```

22
data = spore_count_data,
zeroInflation = FALSE,
family = "nbinom")

summary(MP1_noff)

Call:
glmmadmb(formula = total_char_ascospores ~ geo_sq + gen_dis *
geo + gen_dis_sq + (1 | ma) + (1 | pa) + offset(logtime),
data = spore_count_data, family = "nbinom", zeroInflation = FALSE)
AIC: 12643.4
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.4855 0.2192 15.90 <2e-16 ***
geo_sq -0.0463 0.0361 -1.28 0.2001
gen_dis -0.1312 0.0827 -1.59 0.1126
geo 0.2370 0.0754 3.14 0.0017 **
gen_dis_sq -0.1065 0.0336 -3.17 0.0015 **
gen_dis:geo 0.0772 0.0551 1.40 0.1612

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Number of observations: total=882, ma=21, pa=21
Random effect variance(s):
Group=ma
Variance StdDev
(Intercept) 0.733 0.8561
Group=pa
Variance StdDev
(Intercept) 0.201 0.4483
Negative binomial dispersion parameter: 1.9077 (std. err.: 0.087565)
Log-likelihood: -6312.71

Calculate qAIC

chat <- dfun(MP1_noff)
dredge_MP1_noff <- dredge(MP1_noff, rank = "QAIC", chat = chat)

Fixed term is ";(Intercept)"

head(dredge_MP1_noff)

Global model call: glmmadmb(formula = total_char_ascospores ~ geo_sq + gen_dis *
geo + gen_dis_sq + (1 | ma) + (1 | pa) + offset(logtime),
data = spore_count_data, family = "nbinom", zeroInflation = FALSE)

Model selection table
(Int) gen_dis gen_dis_sq geo geo_sq gen_dis:geo off(lgt) df

23
Selected Model

QAIC includes all but geo_sq and gen_dis*geo
MP1_noff <- glmmadmb(formula = total_char_ascospores ~ geo +
 #geo_sq +
 #gen_dis*geo +
 gen_dis +
 gen_dis_sq +
 (1 | ma) +
 (1 | pa) +
 offset(logtime),
 data = spore_count_data,
 zeroInflation = FALSE,
 family = "nbinom")

summary(MP1_noff)

Call:
glmmadmb(formula = total_char_ascospores ~ geo + gen_dis + gen_dis_sq +
(1 | ma) + (1 | pa) + offset(logtime), data = spore_count_data,
family = "nbinom", zeroInflation = FALSE)
##
AIC: 12642.9

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.4318 0.2168 15.83 <2e-16 ***
geo 0.1847 0.0655 2.82 0.0048 **
gen_dis -0.1273 0.0731 -1.74 0.0814 .
gen_dis_sq -0.0853 0.0318 -2.68 0.0073 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Number of observations: total=882, ma=21, pa=21
Random effect variance(s):
Group=ma
Variance StdDev
(Intercept) 0.74 0.8602
Group=pa
Variance StdDev
(Intercept) 0.2105 0.4588
##
Negative binomial dispersion parameter: 1.903 (std. err.: 0.087327)
##
Log-likelihood: -6314.43

R2GLMM of selected model.

R2m is the marginal (fixed effects) R2glm value and R2c is the conditional R2glm value (fixed + random effects)

```r
spore_count_R2glm <- glmmadmbR2(model = MP1_noff, 
                               offset=TRUE, 
                               spec_os = "offset(logtime)", 
                               err_dist = "nbinom")
print(spore_count_R2glm)
```

```
## $R2m
## [1] 0.04349842
##
## $R2c
## [1] 0.7785641
```

Variance of maternal vs. paternal random effect coefficients (BLUPs) of selected model

```r
MP1noff_ranef <- ranef(MP1_noff)

r.pa.spore <- MP1noff_ranef$pa
r.ma.spore <- MP1noff_ranef$ma

var.test(r.pa.spore, r.ma.spore)
```

```
## F test to compare two variances
##
## data:  r.pa.spore and r.ma.spore
## F = 0.2582, num df = 20, denom df = 20, p-value = 0.003878
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1047543 0.6362447
## sample estimates:
## ratio of variances
## 0.2581654
```
Correlation between maternal and paternal BLUPs of selected model

```r
lm_ranef_spore <- lm(r.pa.spore ~ r.ma.spore)
summary(lm_ranef_spore)
```

```
##
## Call:
## lm(formula = r.pa.spore ~ r.ma.spore)
##
## Residuals:
##    Min     1Q   Median     3Q    Max
## -0.52935 -0.43410  0.09129  0.29621  0.63146
##
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.000791  0.090887  -0.009  0.993
## r.ma.spore   0.194374  0.107699   1.805  0.087 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4165 on 19 degrees of freedom
## Multiple R-squared: 0.1463, Adjusted R-squared: 0.1014
## F-statistic: 3.257 on 1 and 19 DF,  p-value: 0.08698
```

Model Proportion Pigmented

Full Model

```r
# add log of total ascospores for offset to dataframe used for pigmented spore count model
pigmented_count_data <- data.frame(geo,
                                   gen_dis,
                                   ma,
                                   pa,
                                   pigmented_count)

#add log of total ascospores for offset to dataframe used for pigmented spore count model
total_char_ascospores_na<-total_char_ascospores
total_char_ascospores_na[total_char_ascospores_na==0]<-NA
pigmented_count_data$logTotalAscospores <- log(total_char_ascospores_na)
pigmented_count_data <- pigmented_count_data[complete.cases(pigmented_count_data), ]
pigmented_count_data <- data.frame (geo = mean_center(pigmented_count_data$geo),
                                    geo_sq = mean_center(pigmented_count_data$geo)^2,
                                    gen_dis = mean_center(pigmented_count_data$gen_dis),
                                    gen_dis_sq = mean_center(pigmented_count_data$gen_dis)^2,
                                    ma = pigmented_count_data$ma,
                                    pa = pigmented_count_data$pa,
                                    pigmented_count = pigmented_count_data$pigmented_count,
                                    logTotalAscospores = pigmented_count_data$logTotalAscospores)

MP1_perc_pig <- glmmadmb(formula = pigmented_count ~
                          geo_sq +
                          gen_dis*geo +
                          gen_dis_sq +
```
(1 | ma) +
(1 | pa) +
offset(logTotalAscospores),
data = pigmented_count_data,
zeroInflation = FALSE,
family = "nbinom")

summary(MP1_perc_pig)

##
Call:
glmmadmb(formula = pigmented_count ~ geo_sq + gen_dis * geo +
gen_dis_sq + (1 | ma) + (1 | pa) + offset(logTotalAscospores),
data = pigmented_count_data, family = "nbinom", zeroInflation = FALSE)
##
AIC: 10085.6
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.3997 0.0948 -4.22 2.5e-05 ***
geo_sq -0.0717 0.0159 -4.50 6.9e-06 ***
gen_dis -0.1814 0.0359 -5.05 4.5e-07 ***
geo 0.1033 0.0335 3.09 0.0020 **
gen_dis_sq -0.0540 0.0145 -3.72 0.0002 ***
gen_dis:geo -0.0614 0.0234 -2.63 0.0086 **

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Number of observations: total=881, ma=21, pa=21
Random effect variance(s):
Group=ma
Variance StdDev
(Intercept) 0.09062 0.301
Group=pa
Variance StdDev
(Intercept) 0.08404 0.2899
##
Negative binomial dispersion parameter: 11.013 (std. err.: 0.61238)
##
Log-likelihood: -5033.79

Calculate qAIC

cchat <- dfun(MP1_perc_pig)
ddredge_MP1_perc_pig <- dredge(MP1_perc_pig, rank = "QAIC", chat = cchat)

Fixed term is "(Intercept)"

head(ddredge_MP1_perc_pig)

Global model call: glmmadmb(formula = pigmented_count ~ geo_sq + gen_dis * geo +
gen_dis_sq + (1 | ma) + (1 | pa) + offset(logTotalAscospores),
data = pigmented_count_data, family = "nbinom", zeroInflation = FALSE)

Model selection table
(Int) gen_dis gen_dis_sq geo geo_sq gen_dis:geo off(lTA) df
64 -0.3997 -0.18140 -0.05401 0.10330 -0.07171 -0.06141 + 9
48 -0.4017 -0.15210 -0.06349 0.10600 -0.07016 + 8
62 -0.4592 -0.08598 0.06909 -0.06193 -0.08255 + 8
44 -0.4385 -0.09904 -0.05141 -0.04509 + 7
56 -0.4812 -0.12580 -0.04331 0.02772 -0.05956 + 8
36 -0.4845 -0.08565 -0.04962 + 6
logLik QAIC delta weight
64 -5033.79 10085.6 0.00 0.915
48 -5037.22 10090.4 4.86 0.081
62 -5040.56 10097.1 11.54 0.003
44 -5042.15 10098.3 12.72 0.002
56 -5043.79 10103.6 18.00 0.000
36 -5047.40 10106.8 21.22 0.000
Models ranked by QAIC(x, chat = 0.823629062022813)
Random terms (all models):
'1 | ma', '1 | pa'

Selected Model

Selected model includes all terms.

R2GLMM of selected model.

R2m is the marginal (fixed effects) R2glmm value and R2c is the conditional R2glmm value (fixed + random effects)

```r
perc_pig_R2glmm<-glmmadmbR2(model = MP1_perc_pig, 
offset = TRUE, 
spec_os = "offset(logTotalAscospores)", 
err_dist = "nbinom")
print(perc_pig_R2glmm)
```

```r
## $R2m
## [1] 0.005010005
##
## $R2c
## [1] 0.07081422
```

Variance of maternal vs. paternal random effect coefficients (BLUPs) of selected model

```r
MP1perc_pig_ranef<-ranef(MP1_perc_pig)
r.pa.pig.perc<-MP1perc_pig_ranef$pa
r.ma.pig.perc<-MP1perc_pig_ranef$ma
var.test(r.pa.pig.perc, r.ma.pig.perc)
```

```r
## F test to compare two variances
```
Correlation between maternal and paternal BLUPs of selected model

```r
lm_ranef_pig_perc<-lm(r.pa.pig.perc ~ r.ma.pig.perc)
summary(lm_ranef_pig_perc)
```

Model Pigmented Spore Size

Full Model

```r
PSSCW_std <- pigmented_size

PSSCWdf <- data.frame(PSSCW_std, 
    gen_dis, 
    geo, 
    ma, 
    pa)

PSSCWdf <- PSSCWdf[complete.cases(PSSCWdf), ]

PSSCWdf <- data.frame(PSSCW_std = PSSCWdf$PSSCW_std, 
    gen_dis = mean_center(PSSCWdf$gen_dis), 
    # other transformations as needed)
```
$$\text{gen_dis_sq} = \text{mean_center}(\text{PSSCWdf}\$\text{gen_dis})^2,$$
$$\text{geo} = \text{mean_center}(\text{PSSCWdf}\$\text{geo}),$$
$$\text{geo_sq} = \text{mean_center}(\text{PSSCWdf}\$\text{geo})^2,$$
$$\text{ma} = \text{PSSCWdf}\$\text{ma},$$
$$\text{pa} = \text{PSSCWdf}\$\text{pa})$$

```r
MP1_Pigmented_size <- \text{glmmadmb(formula = PSSCW\_std -}
geo*gen\_dis +
geo\_sq +
gen\_dis\_sq +
(1 | ma) +
(1 | pa),
data = PSSCWdf,
zeroInflation=FALSE,
family="\text{gaussian}")
```

```r
summary(MP1_Pigmented_size)
```

```r
## Call:
## \text{glmmadmb(formula = PSSCW\_std - geo \ast gen\_dis + geo\_sq + gen\_dis\_sq +}
## (1 | ma) + (1 | pa), data = PSSCWdf, family = "\text{gaussian}",
## zeroInflation = FALSE)
## ## AIC: -1298.6
## ## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.852074 0.028322 65.39 <2e-16 ***
## geo 0.025042 0.010888 2.30 0.021 *
## gen\_dis -0.007022 0.011542 -0.61 0.543
## geo\_sq -0.012859 0.005148 -2.50 0.012 *
## gen\_dis\_sq -0.005114 0.004667 -1.10 0.273
## geo:gen\_dis -0.000276 0.007779 -0.04 0.972
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## ## Number of observations: total=880, ma=21, pa=21
## ## Random effect variance(s):
## Group=ma
## Variance StdDev
## (Intercept) 0.008371 0.09149
## Group=pa
## Variance StdDev
## (Intercept) 0.00703 0.08384
## ## Residual variance: 0.10611 (std. err.: 0.0025908)
## ## Log-likelihood: 658.319
```
Calculate AIC

dredge_MP1_Pigmented_Size <- dredge(MP1_Pigmented_size)

Fixed term is "(Intercept)"

head(dredge_MP1_Pigmented_Size)

Global model call: glmmadmb(formula = PSSCW_std ~ geo * gen_dis + geo_sq + gen_dis_sq +
(1 | ma) + (1 | pa), data = PSSCWdf, family = "gaussian",
zeroInflation = FALSE)

Model selection table
(Int) gen_dis gen_dis_sq geo geo_sq gen_dis:geo df logLik
13 1.848 0.02589 -0.013430 6 657.416
15 1.849 -0.002727 0.02178 -0.011750 7 658.122
14 1.846 0.003946 0.02192 -0.011940 7 657.663
16 1.852 -0.006897 -0.005157 0.02506 -0.012860 8 658.319
30 1.846 0.001969 0.02199 -0.011960 -0.00252 8 657.720
11 1.846 -0.004615 -0.007029 6 655.528

AICc delta weight
13 -1302.7 0.00 0.351
15 -1302.1 0.62 0.258
14 -1301.2 1.54 0.163
16 -1300.5 2.26 0.113
30 -1299.3 3.46 0.062
11 -1299.0 3.78 0.053

Models ranked by AICc(x)

Random terms (all models):
'1 | ma', '1 | pa'

Selected Model

#only includes geo and geo_sq

MP1_Pigmented_size <- glmmadmb(formula = PSSCW_std -
 #geo*gen_dis +
 geo +
 geo_sq +
 #gen_dis_sq +
 (1 | ma) +
 (1 | pa),
 data = PSSCWdf,
 zeroInflation=FALSE,
 family="gaussian")

R2GLMM of selected model.

R2m is the marginal (fixed effects) R2glmm value and R2c is the conditional R2glmm value (fixed + random effects)
pigm_size_R2glmm <- glmmadmbR2(model = MP1_Pigmented_size,
 offset = FALSE,
 err_dist = "gaussian")

print(pigm_size_R2glmm)

$R2m
[1] 0.002374187
##
$R2c
[1] 0.1283417

Variance of maternal vs. paternal random effect coefficients (BLUPs) of selected model

MP1_Pigmented_size_ranef <- ranef(MP1_Pigmented_size)

r.pa.psize <- MP1_Pigmented_size_ranef$pa
r.ma.psize <- MP1_Pigmented_size_ranef$ma

var.test(r.pa.psize, r.ma.psize)

F test to compare two variances
data: r.pa.psize and r.ma.psize
F = 0.8206, num df = 20, denom df = 20, p-value = 0.6626
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.332972 2.022367
sample estimates:
ratio of variances
0.8206044

Correlation between maternal and paternal BLUPs of selected model

lm_ranef_pigsize <- lm(r.pa.psize ~ r.ma.psize)
summary(lm_ranef_pigsize)

Call:
lm(formula = r.pa.psize ~ r.ma.psize)
##
Residuals:
Min 1Q Median 3Q Max
-0.082840 -0.024166 0.005716 0.027876 0.078675
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.790e-07 9.449e-03 0.000 1
r.ma.psize 7.760e-01 1.072e-01 7.238 7.18e-07 ***

32
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.0433 on 19 degrees of freedom
Multiple R-squared: 0.7338, Adjusted R-squared: 0.7198
F-statistic: 52.38 on 1 and 19 DF, p-value: 7.175e-07

Model Pigmented Spore Germination

Full Model

g_pigmented <- g.pigmented + g.germinated
g_pigmented[g_pigmented==0] <- NA
Log_pigmented <- log(g_pigmented)
gd <- data.frame(germ, geo, gen_dis, ma, pa, Log_pigmented)
gd <- gd[complete.cases(gd),]

germ_data <- data.frame(germ = gd$germ,
geo = mean_center(gd$geo),
geo_sq = mean_center(gd$geo)^2,
gen_dis = mean_center(gd$gen_dis),
gen_dis_sq = mean_center(gd$gen_dis)^2,
ma = gd$ma,
pa = gd$pa,
Log_pigmented = gd$Log_pigmented)

M2_germ_pigmented<- glmmadmb(formula = germ ~
geo_sq +
gen_dis*geo +
gen_dis_sq +
(1 | ma) +
(1 | pa) +
offset(Log_pigmented),
data = germ_data,
zeroInflation=F,
family="nbinom")

summary(M2_germ_pigmented)

Call:
glmmadmb(formula = germ ~ geo_sq + gen_dis * geo + gen_dis_sq +
(1 | ma) + (1 | pa) + offset(Log_pigmented), data = germ_data,
family = "nbinom", zeroInflation = F)

AIC: 8756.4

33
Coefficients:

| Estimate | Std. Error | z value | Pr(>|z|) |
|----------|------------|---------|----------|
| -1.0478 | 0.1345 | -7.79 | 6.8e-15 *** |
| 0.0214 | 0.0265 | 0.81 | 0.419 |
| -0.0314 | 0.0585 | -0.54 | 0.591 |
| -0.0577 | 0.0584 | -0.99 | 0.323 |
| -0.0526 | 0.0262 | -2.01 | 0.044 * |
| 0.0112 | 0.0426 | 0.26 | 0.792 |

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Number of observations: total=875, ma=21, pa=21

Random effect variance(s):

<table>
<thead>
<tr>
<th>Group</th>
<th>Variance</th>
<th>StdDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>ma</td>
<td>0.3055</td>
<td>0.5528</td>
</tr>
<tr>
<td>pa</td>
<td>0.03329</td>
<td>0.1825</td>
</tr>
</tbody>
</table>

Negative binomial dispersion parameter: 3.1676 (std. err.: 0.16625)

Log-likelihood: -4369.18

Calculate qAIC

```r
dfun <- dfun(M2_germ_pigmented)
dredge_M2_germ_pigmented <- dredge(M2_germ_pigmented, rank = "QAIC", chat = chat)
```

Fixed term is "(Intercept)"

```r
head(dredge_M2_germ_pigmented)
```

Global model call: glmmadmb(formula = germ ~ geo_sq + gen_dis * geo + gen_dis_sq + (1 | ma) + (1 | pa) + offset(Log_pigmented), data = germ_data, family = "nbinom", zeroInflation = F)

Model selection table

<table>
<thead>
<tr>
<th>(Int)</th>
<th>gen_dis</th>
<th>gen_dis_sq</th>
<th>geo</th>
<th>geo_sq</th>
<th>off(Log_pgm)</th>
<th>df</th>
<th>logLik</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>-1.047</td>
<td>-0.02932</td>
<td>+</td>
<td></td>
<td></td>
<td>5</td>
<td>-4370.49</td>
</tr>
<tr>
<td>36</td>
<td>-1.021</td>
<td>-0.06147</td>
<td>-0.05528</td>
<td>+</td>
<td></td>
<td>6</td>
<td>-4369.75</td>
</tr>
<tr>
<td>39</td>
<td>-1.044</td>
<td>-0.03252</td>
<td>-0.03915</td>
<td>+</td>
<td></td>
<td>6</td>
<td>-4370.07</td>
</tr>
<tr>
<td>43</td>
<td>-1.054</td>
<td>-0.02984</td>
<td>0.007514</td>
<td>+</td>
<td></td>
<td>6</td>
<td>-4370.43</td>
</tr>
<tr>
<td>47</td>
<td>-1.068</td>
<td>-0.03727</td>
<td>-0.07481</td>
<td>0.027840</td>
<td>+</td>
<td>7</td>
<td>-4369.43</td>
</tr>
<tr>
<td>40</td>
<td>-1.023</td>
<td>-0.05278</td>
<td>-0.05392</td>
<td>-0.02858</td>
<td>+</td>
<td>7</td>
<td>-4369.54</td>
</tr>
</tbody>
</table>
```

QAIC delta weight

35	8751.0	0.000	0.289
36	8751.5	0.052	0.223
39	8752.1	1.16	0.162
43	8752.9	1.88	0.113
47	8752.9	1.88	0.113
40	8753.1	2.10	0.101

34
## Models ranked by QAIC(x, chat = 0.759348818743698)
## Random terms (all models):
## '1 | ma', '1 | pa'

Selected Model

`#qAIC indicates only to keep gen_dis_sq`

```r
M2_germ_pigmented <- glmmadmb(formula = germ ~
 # geo +
 # geo_sq +
 # gen_dis*geo +
 # gen_dis +
 gen_dis_sq +
 (1 | ma) +
 (1 | pa) +
 offset(Log_pigmented),
 data = germ_data,
 zeroInflation = FALSE,
 family = "nbinom")
```

```r
summary(M2_germ_pigmented)
```

```
Call:
glmmadmb(formula = germ ~ gen_dis_sq + (1 | ma) + (1 | pa) +
offset(Log_pigmented), data = germ_data, family = "nbinom",
zeroInflation = FALSE)
##
AIC: 8751
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.0470 0.1303 -8.045 9.2e-16 ***
gen_dis_sq -0.0293 0.0133 -2.200 0.028 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Number of observations: total=875, ma=21, pa=21
Random effect variance(s):
Group=ma
Variance StdDev
(Intercept) 0.309 0.5559
Group=pa
Variance StdDev
(Intercept) 0.0352 0.1877

Negative binomial dispersion parameter: 3.1591 (std. err.: 0.16545)
Log-likelihood: -4370.49
```

35
R2GLMM of selected model.

R2m is the marginal (fixed effects) R2glmm value and R2c is the conditional R2glmm value (fixed + random effects)

germ_pig_R2glmm <- glmmadmbR2(model = M2_germ_pigmented,
                             offset = TRUE,
                             spec_os = "offset(Log_pigmented)",
                             err_dist = "nbinom")

print(germ_pig_R2glmm)

## $R2m
## [1] 0.0015357
##
## $R2c
## [1] 0.172754

Variance of maternal vs. paternal random effect coefficients (BLUPs) of selected model

M2_germ_pigmented_ranef <- ranef(M2_germ_pigmented)

r.pa.germ.pig <- M2_germ_pigmented_ranef$pa
r.ma.germ.pig <- M2_germ_pigmented_ranef$ma

var.test(r.pa.germ.pig, r.ma.germ.pig)

## F test to compare two variances
##
## data: r.pa.germ.pig and r.ma.germ.pig
## F = 0.0874, num df = 20, denom df = 20, p-value = 1.051e-06
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.03545748 0.21535748
## sample estimates:
## ratio of variances
## 0.0873844

Correlation between maternal and paternal BLUPs of selected model

lm_ranef_germ_pig <- lm(r.pa.germ.pig ~ r.ma.germ.pig)
summary(lm_ranef_germ_pig)

## Call:
## lm(formula = r.pa.germ.pig ~ r.ma.germ.pig)
##
## Residuals:
##   Min     1Q Median     3Q    Max
## -0.40296 -0.06875  0.01323  0.10096  0.34925
##
## Coefficients:
Plot variance explained by models

r2glmm_list <- list(perithecia_R2glmm, spore_count_R2glmm, perc_pig_R2glmm, pigm_size_R2glmm, germ_pig_R2glmm)

fixed_effects_parser <- function(x){return(x[[1]])}
fixed_effects_variance <- unlist(lapply(r2glmm_list, fixed_effects_parser))

random_effects_parser <- function(x){return(x[[2]]-x[[1]])}
random_effects_variance <- unlist(lapply(r2glmm_list, random_effects_parser))

explained_variance <- fixed_effects_variance + random_effects_variance
unexplained_variance <- 1 - explained_variance

all_models <- list(MP1_perithecia, MP1_noff, MP1_perc_pig, MP1_Pigmented_size, M2_germ_pigmented)

ma_getter <- function(x){x$S$ma[1,1]}
ma_variances <- unlist(lapply(X=all_models, ma_getter))

pa_getter <- function(x){x$S$pa[1,1]}
pa_variances <- unlist(lapply(X=all_models, pa_getter))

model_names<-'c("Perithecia \nCount", "Spore \nCount", "Proportion \nPigmented", "Pigmented \nSpore Size", "Pigmented \nSpore \nGermination")

ma_pa_variances <- data.frame(Female=ma_variances, Male=pa_variances, Trait=model_names)
ma_pa_variances <- melt(ma_pa_variances, value.name=Trait)

## Using Trait as id variables

ma_pa_variances$Trait <- factor(ma_pa_variances$Trait, as.character(ma_pa_variances$Trait))

## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated
proportion_ma_pa_variance<-ddply(ma_pa_variances,
  .(Trait),
  transform,
  prop=value/sum(value))

## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated

colnames(proportion_ma_pa_variance) <- c("Trait",
  "Sex",
  "value",
  "prop")

fixed_other<-data.frame(Fixed.Effects = fixed_effects_variance,
  Unexplained.Variance = unexplained_variance,
  Trait = model_names)

fixed_other$Female <- subset(proportion_ma_pa_variance, Sex == "Female")$prop * random_effects_variance
fixed_other$Male <- subset(proportion_ma_pa_variance, Sex == "Male")$prop * random_effects_variance
fixed_other_melt <- melt(fixed_other, id.vars = c("Trait"))
fixed_other_melt$variable <- factor(fixed_other_melt$variable, c("Female",
  "Male",
  "Fixed.Effects",
  "Unexplained.Variance"))

fixed_other_melt$Trait <- factor(fixed_other_melt$Trait, c("Perithecia \nCount",
  "Spore \nCount",
  "Proportion \nPigmented",
  "Pigmented \nSpore Size",
  "Pigmented \nSpore \nGermination"))

colnames(fixed_other_melt) <- c("Trait", "Component", "value")

cbbPalette <- c("#000000", "#E69F00", "#9F00E6", "#B8B8B8")

ggplot(fixed_other_melt, aes(x=Trait, y=value)) +
  geom_bar(stat="identity",aes(fill = Component, order = Component), width=.75) +
  theme_bw() +
  scale_fill_manual(values=cbbPalette, labels = c("Female",
    "Male",
    "Crossing Distance",
    "Unexplained Variance")) +
  xlab("Trait") +
  ylab("Proportion of Variance")
Plot maternal and paternal proportions of random effect variance

```r
ggplot(proportion_ma_pa_variance, aes(x=Trait, y=prop)) + geom_bar(stat="identity",aes(fill = Sex), width=.75) + theme_bw() + scale_fill_manual(values=cbbPalette, name="Component") + annotate("text", x=1, y=1, label="***") + annotate("text", x=2, y=1, label="**") + annotate("text", x=5, y=1, label="***") + xlab("Trait") + ylab("Proportion of Variance of Random Effects")
```
Plot of maternal vs paternal BLUPs

```r
predf <- data.frame(r.ma.peri, r.pa.peri,
 Model = "Perithecia\nCount")
colnames(predf) <- c("Female", "Male", "Model")

taredf <- data.frame(r.ma.spore, r.pa.spore,
 Model = "Spore\nCount")
colnames(taredf) <- c("Female", "Male", "Model")

ppredf <- data.frame(r.ma.pig.perc, r.pa.pig.perc,
 Model = "Proportion\nPigmented")
colnames(ppredf) <- c("Female", "Male", "Model")

psredf <- data.frame(r.ma.psize, r.pa.psize,
 Model = "Pigmented Spore\nSize")
colnames(psredf) <- c("Female", "Male", "Model")

ppgredf <- data.frame(r.ma.germ.pig, r.pa.germ.pig,
 Model = "Pigmented Spore\nGermination")
colnames(ppgredf) <- c("Female", "Male", "Model")
```
melt_ranef_facets <- rbind(predf, taredf, ppredf, psredf, ppgredf)

ggplot(melt_ranef_facets, aes(x=Male, y=Female)) +
  geom_point(size=1.5) +
  theme_bw(10) +
  stat_smooth(geom = "smooth",
               method = "lm",
               formula = y~x,
               se = TRUE,
               colour = "black") +
  facet_wrap(~Model, ncol = 5, scales = "free") +
  theme(strip.background = element_blank(),
        axis.text.x=element_text(angle = 45, hjust=1, vjust=1))

HPD intervals for parameters

MCMC parameter estimation

Perithecia Count

MCMC_perithecia <- glmmadmb(formula = perithecia_count ~
    gen_dis +
    gen_dis_sq +
    (1 | ma) +
    (1 | pa),
    data = perithecia_data,
    zeroInflation = FALSE,
    family = "nbinom",
    mcmc = TRUE,
    mcmc.opts=mcmcControl(mcmc=10000))

## Loading required package: coda
## Loading required package: lattice

## Warning: package 'lattice' was built under R version 3.1.2

perithecia_mcmc_coda <- as.mcmc(MCMC_perithecia$mcmc)
Spore Count

MCMC_noff <- glmmadmb(formula = total_char_ascospores ~ geo +
    #geo_sq +
    #gen_dis*geo +
    gen_dis +
    gen_dis_sq +
    (1 | ma) +
    (1 | pa) +
    offset(logtime),
    data = spore_count_data,
    zeroInflation = FALSE,
    family = "nbinom",
    mcmc = TRUE,
    mcmc.opts=mcmcControl(mcmc=10000))

noff_mcmc_coda <- as.mcmc(MCMC_noff$mcmc)

Proportion Pigmented

MCMC_perc_pig <- glmmadmb(formula = pigmented_count ~
    geo_sq +
    gen_dis*geo +
    gen_dis_sq +
    (1 | ma) +
    (1 | pa) +
    offset(logTotalAscospores),
    data = pigmented_count_data,
    zeroInflation = FALSE,
    family = "nbinom",
    mcmc = TRUE,
    mcmc.opts=mcmcControl(mcmc=10000))

perc_pig_mcmc_coda <- as.mcmc(MCMC_perc_pig$mcmc)

Pigmented Size

MCMC_Pigmented_size <- glmmadmb(formula = PSSCW_std ~
    #geo*gen_dis +
    geo +
    geo_sq +
    #gen_dis_sq +
    (1 | ma) +
    (1 | pa),
    data = PSSCWdf,
    zeroInflation=FALSE,
    family="gaussian",
    mcmc = TRUE,
    mcmc.opts=mcmcControl(mcmc=10000))

pigmented_size_mcmc_coda <- as.mcmc(MCMC_Pigmented_size$mcmc)
Pigmented Spore Germination

MCMC_germ_pigmented <- glmmadmb(formula= germ ~
    #geo +
    #geo_sq +
    #gen_dis*geo +
    #gen_dis +
    gen_dis_sq +
    (1 | ma) +
    (1 | pa) +
    offset(Log_pigmented),
    data = germ_data,
    zeroInflation = FALSE,
    family = "nbinom",
    mcmc = TRUE,
    mcmc.opts=mcmcControl(mcmc=10000))

germ_mcmc_coda <- as.mcmc(MCMC_germ_pigmented$mcmc)

Plot parameters and HPD intervals

hpd_perithecia <- HPDinterval(perithecia_mcmc_coda)
hpd_spores <- HPDinterval(noff_mcmc_coda)
hpd_perc_pig <- HPDinterval(perc_pig_mcmc_coda)
hpd_pigm_size <- HPDinterval(pigmented_size_mcmc_coda)
hpd_germination <- HPDinterval(germ_mcmc_coda)

model_output <- data.frame(Parameter = rep(c("(Intercept)",
    "gen_dis",
    "geo",
    "gen_dis_sq",
    "geo_sq",
    "gen_dis:geo"), 5),
    Model = rep(c("PeritheciaCount",
    "TotalAscospores",
    "ProportionPigmented",
    "PigmentedSize",
    "PigmentedGermination"), each = 6))

model_output$Parameter <- factor(model_output$Parameter,
    levels = c("(Intercept)",
    "gen_dis",
    "geo",
    "gen_dis_sq",
    "geo_sq",
    "gen_dis:geo"))

model_output$Model <- ordered(model_output$Model,
    levels = c("PeritheciaCount",
    "TotalAscospores",
    "ProportionPigmented",
    "PigmentedSize",
    "PigmentedGermination")
)
parameter_getter <- function(model_object, modeled_trait, hpd) {
  model_parameters <- as.data.frame(model_object$b)
  model_parameters <- cbind(row.names(model_parameters), model_parameters, Model = modeled_trait)
  row.names(model_parameters) <- c("Parameter", "Value", "Model")
  row.names(model_parameters) <- NULL
  hpd <- as.data.frame(hpd)
  hpd_rn <- cbind(row.names(hpd), hpd)
  model_parameters <- merge(model_parameters, hpd_rn, by.x="Parameter", by.y ="row.names(hpd)"
  return(model_parameters)
}

perithecia_parameters <- parameter_getter(MP1_perithecia, "PeritheciaCount", hpd_perithecia)
spore_count_parameters <- parameter_getter(MP1_noff, "TotalAscospores", hpd_spores)
perc_pig_parameters <- parameter_getter(MP1_perc_pig, "ProportionPigmented", hpd_perc_pig)
pigm_size_parameters <- parameter_getter(MP1_Pigmented_size, "PigmentedSize", hpd_pigm_size)
germ_parameters <- parameter_getter(M2_germ_pigmented, "PigmentedGermination", hpd_germination)
all_parameters <- rbind(perithecia_parameters,
                        spore_count_parameters,
                        perc_pig_parameters,
                        pigm_size_parameters,
                        germ_parameters)

model_results <- merge(all_parameters, model_output, by.x=c("Parameter", "Model"),
                         by.y=c("Parameter", "Model"), all.y=TRUE)
model_results$lower <- as.numeric(model_results$lower)
model_results$upper <- as.numeric(model_results$upper)

model_results$Parameter <- factor(model_results$Parameter,
                                   levels = c("(Intercept)",
                                              "gen_dis",
                                              "gen disap",
                                              "geo",
                                              "geo sq",
                                              "gen dis:geo")
})
model_results$Model <- ordered(model_results$Model,
                                levels = rev(c("PeritheciaCount",
                                               "TotalAscospores",
                                               "ProportionPigmented",
                                               "PigmentedSize",
                                               "PigmentedGermination"))
})
limits <- aes(xmax = upper, xmin= lower)

ggplot(model_results, aes(x = Value, y = Model)) +
  geom_point() +
  geom_errorbarh(limits, height = .2, colour = "black") +
  geom_vline(xintercept = 0, colour = "black", linetype = "dotted") +
  facet_wrap(~Parameter, scales = "free_x", ncol = 6) +
  theme_bw(10) +
  scale_y_discrete(labels = c("PeritheciaCount" = "Perithecia\nCount",
                         "TotalAscospores" = "Spore\nCount",
                         "ProportionPigmented" = "ProportionPigmented",
                         "PigmentedSize" = "PigmentedSize",
                         "PigmentedGermination" = "PigmentedGermination")

44
scale_x_continuous("Parameter Value") +
theme(
    panel.margin = unit(.5, "lines"),
    strip.background = element_blank(),
    #panel.border = element_blank(),
    axis.line = element_line(color="black"),
    axis.line.y = element_blank(),
    axis.text.x = element_text(angle = 45, hjust=1, vjust=1))

## Warning: Removed 2 rows containing missing values (geom_point).
## Warning: Removed 1 rows containing missing values (geom_point).
## Warning: Removed 2 rows containing missing values (geom_point).
## Warning: Removed 3 rows containing missing values (geom_point).
## Warning: Removed 4 rows containing missing values (geom_point).