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Introduction. 

Population genomic studies can reveal the allele frequencies at millions of SNPs, with the 

numbers of observed low frequency SNPs increasing as more genomes are sequenced. Rare 

alleles tend to be younger than common alleles and are especially useful for studying 

demographic history, selection and heritability
1,2

. However, allele frequency can be a poor 

proxy for allele age, as genetic drift and natural selection can lead to alleles that are both rare 

and old.  In order to allow joint assessments of allele frequency and allele age, a new 

estimator of allele age was developed that can be applied to variants of the lowest observed 

frequencies (singletons). By examining the geographic and age distribution of very rare 

variants in a large genomic sample from the UK
3
, we identify new evidence of gene flow from 

Africa into the ancestors of the modern UK population. A substantial proportion of variants 

with observed frequencies as low as �. � � ���� are orders of magnitude older than can be 

explained without African gene flow and are found at much higher frequencies within 

modern African populations. We estimate that African populations contributed 

approximately 1.2% of the UK gene pool and did so approximately 400 years ago. These 

findings are relevant both to our understanding of human history and to the nature of rare 

variation segregating within populations: a variant that is rare because it is a recent mutation 

in the direct ancestor of the population will have had a very different evolutionary history 

than an ancient one that has persisted at high frequencies in a diverged population and only 

recently arrived through migration. 
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The two existing classes of methods for estimating the ages of genetic variants cannot be 

applied effectively to very rare variants. Methods that map allele frequencies to allele ages
4–6 

cannot meaningfully distinguish among alleles that are already rare and greatly limiting the 

information they can convey. Other methods use the length of a shared haplotype, (or the rate 

of decay of linkage disequilibrium) among chromosomes that carry the rare allele to estimate 

the time since the carriers last shared a common ancestor 
7,8

. However, these methods require 

that an allele occur at least twice in a sample.  We developed an age estimator that can be 

applied to variants of any frequency including those that are observed just once. Instead of 

estimating the time since the common ancestor of all carriers of a variant, we estimate the 

time, tc , since the carriers of the variant last shared a common ancestor with a haplotype that 

does not carry the variant of interest. This time estimate serves as both an upper bound on the 

age of the variant itself as well as a measure of how long its lineage has been distinct from 

others in the sample. Being able to infer the age composition of very rare alleles allows us to 

unlock a new picture of how the forces shaping a gene pool may have recently changed, 

including recent shifts in ancestral composition. 

 

We applied our method to estimate tc for 21,992,410 of the rarest variants in the UK10k
3
 

whole-genome population sequencing sample that has been filtered to remove close relatives 

and individuals of non-European ancestry.  The distribution of estimated values revealed a 

dramatic excess of variation that is both old and rare -- well beyond what is predicted by 

previous models of UK or European human history. Figure 1 shows the means and standard 

deviations of the distributions of log(tc ) values for variants found 2, 3, 4, 5, 10, and 25 times in 

the UK10k sample of 3,621 individuals (7,242 haplotypes), and compares them with predictions 

from five published models of UK and European demographic histories
9–13

 as well as new 

models with additional admixture events from an African population or diverged archaic human 

group. For all of the lowest frequency classes, the observed data contain variants that are far 

too old to have been generated by the published models (all of which returned mean simulated 

tc distributions considerably smaller than for the observed data). The models proposed by 
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Gutenkunst et al.
9
 and Gravel et al.

10
, the two published models with migration between Africa 

and Europe, return standard deviations similar to that of the observed data but with insufficient 

old alleles to substantially raise the predicted mean. For variants as common as those found 25 

times (a frequency of ~0.35%), all models fit the observed distribution reasonably well.  

 

Admixture from archaic humans will have introduced old alleles, and some of these are 

expected to appear at the lowest frequencies in the UK10K sample. However, we found that 

admixture with archaic humans does not introduce sufficiently rare alleles in the numbers 

necessary to explain the discrepancy.  While the alleles introduced by such admixture are old, 

few of the introduced alleles end up in the relevant frequency classes at the time of sampling. 

When we turned to extant human populations as potential sources of old, very low frequency 

variants, we found an excellent fit with models that include recent admixture from African 

populations.  

 

Figure 2 shows the fit of a series of models based on that by Gazave et al.
11

 with the addition of 

a recent migration event from an un-sampled African population to an ancestral UK population 

from which it separated 2,000 generations ago.  The best fit model is one with 1.2% admixture 

21 generations ago. This is a model in which ~10% of rare UK10k variants predate the human 

expansion out of Africa (see Extended Figure 2); have been segregating at moderate frequency 

within Africa; and were recently introduced to the UK population from Africa through 

migration. 

 

If migration from Africa is responsible for substantially altering the age distribution of rare UK 

alleles we expect to find a substantial proportion of these rare British alleles at higher 

frequency in African populations than they are in the UK (or other European populations). We 

assessed all of the UK10k singleton variants, and variants found 25 times, for their presence and 

frequency within the populations of the 1000 genomes project phase 3 dataset
14

. Figure 3 

shows that very rare UK10K alleles are typically at their rarest in Great Britain and present in 

higher frequencies in African populations than elsewhere in the world. In contrast, variants 
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observed 25 times within the UK10k data show a very different pattern, as they are rarely 

found outside of Europe, but are found at relatively high frequency when they do occur. This is 

the pattern expected of alleles that have primarily not been recently introduced by migration, 

but rather have persisted both inside and outside of Africa since their origins before the 

population divergence at the time of the out of Africa expansion.  

 

Extended data figure 1 shows that the distributions of tc values for UK10k variants that are 

found in African populations in the 1000 Genomes Project data are considerably older than 

those that are not. Similar results are found comparing the UK10K variants to those sequenced 

in the African samples of the Simons Diversity Panel
15

. 

 

While figure 2 indicates support by the data for models with ~1.2% admixture, the overall 

distribution of rare allele ages is consistent with a range of models that vary in the timing of the 

admixture event. We further refined the estimate of the time of admixture by explicitly 

modelling the distribution of the numbers of introgressed alleles observed among the 

individuals in the UK10K sample. In a random-mating model with admixture occurring over a 

short period of time, the introgressed alleles will come to be spread fairly evenly in the 

population over a small number of generations. However, as shown in figure 4, the distribution 

of numbers of alleles, for alleles that occurred twice in the UK10K sample with tc values greater 

than 2,500, shows a considerable clustering across individuals, with 13% of individuals 

harboring ~40% of all such variants. This clumping is suggestive of recent introgression, but 

could also be consistent with older introgression with the decay of clustering slowed by non-

random mating. As shown in figure 4c, the observed distribution is well fit by a broad range of 

models of assortative mating, all implying a time of admixture 11-14 generations before 

sampling. The model ‘African admixture (14gen)’ in figure 1 represents the expected 

distribution of log(tc) values for a 1.2% admixture event 14 generations before sampling. 

 

With African gene flow modeled as a point admixture event, we estimate 1.2% of the ancestors 

of the UK10k population came from Africa 11-14 generations ago. A generation time of 29 
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years
16

 places the migration event early in the era of the “First” British Empire when Britain was 

actively establishing colonies in West Africa and the West Indies
17

. During this period there was 

a notable rise in the Black British population, often as household attendants to returning sea 

captains and colonists or as former slaves from Spain and Portugal
18,19

.  

 

This model of demographic influx is one in which many alleles that arose before the expansion 

out of Africa rose to (or remained at) relatively high frequencies within a much larger African 

population while being lost or excluded from the smaller ancestral European population. These 

alleles then had the opportunity to be reintroduced to the European population in very small 

quantities through recent migration. We are not excluding the possibility that the gene flow 

that shifted the distribution of UK10k tc values was a more complicated phenomenon than a 

single migration event. With relatively higher levels of African gene flow into Southern 

European populations
20,21

 it is probable that some proportion of the African variants we find in 

the UK10k population did not come by immigration directly from Africa but by more circuitous 

means.   

 

It has been argued that rare variants should fall almost exclusively into the class of recent 

mutations, and that rare variants are unlikely to be found outside of their population of 

origin
10,22

. This conclusion was drawn from a model fit from a smaller sample where the rarest 

variants were at considerably higher population frequencies than the rarest variants in the 

UK10k data. As shown in Figure 2, as a variant rises in frequency even to 0.0035 frequency 

(k=25 in the UK10k sample), the probability of finding it outside of Europe drops dramatically. It 

is predominantly among the very rarest of variants that we see the substantial impact of recent 

migrants. 

Methods. 

UK10k population data 

We use the mapping sample of 3,621 individuals from the UK10k data set that has been filtered 

by the UK10k consortium to remove close relatives and individuals of recent non-European 
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ancestry. These include genomes from the ALSPAC cohort, which focused on the Avon region, 

and the TWINSUK cohort which includes samples from across the UK. We masked all CpG / TpG 

transversion polymorphisms to avoid homoplasy and reduce heterogeneity in the mutation 

rate. Haplotype phase for variants found two or more times was inferred by the UK10k 

consortium using SHAPEIT
23

. Haplotype phase for singleton variants was assigned to maximize 

their tc values as branches of gene trees that harbor mutations are expected to be longer than 

those that do not. The tc values for singleton variants were not used in fitting the demographic 

models. 

Estimating tc values  

We estimate the tc value of a singleton variant as a function of the length of the maximum 

shared haplotype (��� ) that extends from it in either direction. Starting at the site of the 

variant, we find the pairwise alignment with the rest of the sample that has the longest perfect 

match before the first discrepancy. This is done independently in the 5’ and 3’ directions giving 

a pair of ��� observations that need not arise from the same alignment. We assume that the 

alignments that generate the ��� values are between the variant-carrying haplotype and its 

closest relatives. We model each ��� value as the distance to the closest mutation or 

recombination event to have occurred on either the external branch leading to the singleton 

variant (which create discrepancies between the variant-carrying haplotype and all other 

haplotypes in the sample) or on its first sister branch (which create discrepancies between the 

variant-carrying haplotype and all of its closest relatives). Each ��� is then treated as the 

distance to the closest event in a Poisson process with a density parameter equal to the sum of 

the mutation and recombination rates times the sum of two branch lengths: the external 

branch along which the singleton variant arose, which has length tc, and its sister branch, which 

has some length .  With a uniform per-base recombination rate ρ and mutation rate μ, the 

probability density is an exponential distribution: 

	
���, �� , , �� � 
�� � ��
 � ����������	
���	� . (1) 

In practice we relax the assumption of uniform recombination rate and introduce two 

modifications to how we record the ��� values: first, to minimize artifacts from mis-phased 

singleton variants, we do not end a maximum shared haplotype tract if a discrepancy is due to a 
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singleton variant. Second, while our derivation models ��� as stopping at a recombination 

event, such events cannot be directly observed, and so the measured ��� necessarily 

continues until a (non-singleton) mutation is encountered that is not shared between the 

aligned haplotypes. This is expected to occur very shortly after a recombination event as non-

shared mutations accrue at a much higher rate beyond the first recombination event.  

 

The probability density of the length of the sister branch, conditional on tc, is derived from a 

hazard model of the rate of coalescent forward in time
24

.   

  	
�|��� �
��
�
��

0, � � 0
������
���� �������	
�

������	
�
�

�����
� , 0 � � � ��
1 � � 	
�|��� ���� , � � ��0, � ! ��

" , (2) 

where #
$� is the number of ancestral of lineages ancestral to sampled individuals that existed 

$ generations in the past. Using an approximation for #
$� 
25

 and changing variables, we get: 

#
$� � �
�������	�� 
�

���	
�
�


�

 , (3) 

where # is the the number of lineages at time 0 (i.e. the sample size), and N(t) is the size of the 

population t generations in the past.   

 

For a given SNP we record % � &
$�� � $��� � '�� � '�� where $�� and $�� are the ��� 

distances on the 5) and 3) sides of the focal base position, in base pairs, and '�� and '�� are the 

same distances in Morgans. Working in absolute recombination distances allows a relaxation of 

the assumption of uniform recombination rate. Then the likelihood can be written as  

 

+
%|��� � � 	
�|���
�� � ���������	
� � �  	
� � ��|��� 4���������  ���  . (4) 

 

This expression is readily simplified for a constant or exponential growth population model, 

while more complex demographic histories may require numeric integration. In either case the 

maximum likelihood estimate of �� can be found by numerical optimization.   
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Because the demographic model enters (4) through the density of �, which makes a minority 

contribution to the likelihood, the choice of the form of the demographic model (i.e. constant 

versus exponential versus multi-phase) actually has very little impact on parameter estimates 

(see Extended Data Figure 3). This insensitivity of the estimator to demographic assumptions is 

a useful property of a statistic that is to be used to uncover components of demographic 

histories. We use a fixed - � 5,000 for all analyses of the UK10K variants. 

 

For variants that are not singletons, we use a composite likelihood to estimate the value of tc 

that best fits all of the ��� values simultaneously. We approximate their joint likelihood as the 

product of the likelihoods of the ��� values for each copy of the variant considered 

independently, each in turn being compared to the rest of the sample that do not carry the rare 

allele. 

 

While statistics derived from maximum values of observed data (such as the maximum length 

of a shared haplotype in our estimator) are often poorly behaved with large biases and strong 

sensitivities to model misspecification or stochastic noise, our estimator performs quite well, 

even under adverse conditions, such as when using ��� values from statistically phased 

haplotypes. We demonstrate this through coalescent simulations generated with msprime
26

. As 

shown in Extended Data Table 1 and Extended Data Figure 4, for all of our simulations the bias 

was low. Precision was good for simulated populations of constant size but was low when 

estimating tc for very young singleton variants in models of extreme recent population growth. 

However even in these cases, the bias is small and precision may be sufficiently good to allow 

studies of many variants. For non-constant population size models precision returns to the 

higher levels found in constant-sized populations for variants of slightly higher frequencies. 

 

Evaluating demographic models 

We estimate the mean and standard deviation for a given model by simulating 500 

independent coalescent trees with sample sizes of 7,242 haplotypes using msprime. For a low 
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frequency allele observed . times we identify all of the branches that are ancestral to . leaves 

and calculate the average of their starting ages weighted by the ratio of their lengths to the 

total length of branches with . leaves across the set of trees. 

 

We evaluated the distributions of tc values under eight different demographic scenarios. 

Browning et al.
13

 is a single-population model fit to UK10k data. Gazave et al.
11

 and Gao et al.
12

 

are single-population models fit to the European-American population of the NHLBI Exome 

Sequencing Project
27

. Gutenkunst et al.
9
 and Gravel et al.

10
 are three-population models 

(African, European, and Asian) fit to data from the Environmental Genome Project
28

 and 1000 

Genomes Project respectively, with all of the samples treated as coming from the European 

population. Archaic admixture is a model of ours that augments Gazave et al. with an archaic 

population that diverged 25,000 generations in the past and contributed 3% to the European 

population 2,000 generations ago. Our models of African admixture (African admixture (21gen) 

and African admixture (14gen)) use the Gazave et al. demographic model but add an additional 

1.2% contribution of African lineages to the European population 21 or 14 generations ago 

respectively. Model fit is ascertained by calculating the root mean squared error of the means 

of the log(tc) values for variants occurring 2, 3, 4, 5, 10, and 25 times in the UK10K data. 

 

Estimating migration parameters 

Parameters describing the timing and quantity of African admixture were ascertained in a two-

stage process. First, root mean squared log error of the mean tc values for variants occurring 2, 

3, 4, 5, 10, and 25 times in the UK10K data were evaluated for each cell of a 20 x 20 two-

dimensional grid of parameter values, with admixture varying between 0 and 5% and the time 

of admixture varying from 1 to 200 generations prior to sampling.  

Second, we refined our estimate of the time of admixture by modeling the spread of immigrant 

doubleton alleles through the population. At the time of admixture, all of the immigrant alleles 

will reside in a proportion of the population equal to the admixture proportion. In subsequent 

generations these alleles spread across more individuals. Using the admixture proportion of 

1.2% identified in the previous grid search, we fit a time since admixture using a Wright-Fisher 
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forward simulation with a two-parameter model of associative mating. A threshold parameter 

defines two ancestry groups and an intensity parameter describes the degree of preference for 

within-group mating. In each generation the population is divided into two ancestry groups: 

individuals with more than the threshold African ancestry and those with less. For each 

offspring in the next generation, one parent is drawn at random from the population. With 

probability equal to the intensity parameter the second parent is chosen at random from within 

the same ancestry group as the first parent. With probability one minus the intensity parameter 

the second parent is chosen at random from the entire population. Each offspring is assigned 

an ancestry proportion equal to the mean of its parents. 
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Figures. 

 

Figure 1. Distributions of log(tc) 

values. Variants of different 

frequencies in the UK10k data 

(k values) represented as mean 

± one standard deviation of the 

log-transformed tc values. The 

observed distribution is marked 

in black with other colors 

indicating expectations under 

proposed demographic histories 

of Britain and Europe. 
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Figure 2. African admixture parameter optimization. Root mean squared log error between 

observed tc values and those simulated over a grid of proposed values for timing and magnitude

of African gene flow into the ancestors of the UK10k population. 
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Figure 3. Geographic distribution of UK10k variants. Panels a. and b. reflect variants that are 

singletons in the UK10k data. Panels c. and d. reflect variants found 25 times in the UK10k data. 

Panels a. and c. describe the proportion of UK10k variants found in each population sample in 

1000 Genomes Project data. Panels b. and d. describe the average frequency in the 1000 

Genomes Project data of UK10k variants. 95% confidence intervals are all less than 0.4% of the 

bar heights for panels a. and b. and less than 4% of the bar heights for panels c. and d. 
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Extended Data  

Tables. 

ka demographyb phasingc errord biase correlationf 

1 constant Known 0.16 0.09 0.87 

5 constant Known 0.11 0.04 0.84 

10 constant Known 0.10 0.02 0.82 

25 constant Known 0.11 -0.02 0.69 

1 constant inferred 0.39 -0.16 0.41 

5 constant inferred 0.11 0.03 0.82 

10 constant inferred 0.10 0.01 0.81 

25 constant inferred 0.11 -0.03 0.68 

1 growth Known 0.17 0.11 0.55 

5 growth Known 0.10 0.06 0.76 

10 growth Known 0.09 0.04 0.85 

25 growth Known 0.09 0.01 0.81 

1 growth inferred 0.22 -0.05 0.26 

5 growth inferred 0.10 0.03 0.70 

10 growth inferred 0.09 0.02 0.82 

25 growth inferred 0.09 -0.01 0.80 

 

Extended Data Table 1. Performance characteristics of tc estimator. Properties of estimated tc 

values compared to true simulated tc values. a) attributes of variants found k times in the 

sample. b) simulations of either constant-sized populations or one with recent exponential 

growth. c) haplotype phasing taken directly from the simulation (known) or statistically inferred 

from simulated diploid genotypes. d) root mean squared log error of estimator. e) average 

signed log error. f) Pearson’s r statistic. 
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Figures. 

Extended Data Figure 1. Age distribution of African variants. Distributions of tc values for UK10k 

singleton variants (a) and variants found 25 times (b) grouped by presence or absence in any 

West African population of the 1000 Genomes Project.  
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Extended Data Figure 2. Expected distributions of tc values by age and population. Simulation 

results for the expected distribution of tc values colored by the population in which the 

coalescent event took place. Demographic models are (a) Gazave et al. and (b) African 

admixture (21gen). 
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Extended Data Figure 3. Estimator robustness to demographic model assumptions. Distribution 

of estimated tc values for simulated singleton variants estimated assuming a constant-sized 

population of 5,000 (black) and 500,000 (red) as a function of the value estimated assuming the

correct generative model of exponential population growth from 5,000 to 500,000 over the last 

120 generations. 
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Extended Data Figure 4. Estimator performance. Density plots for estimation of tc values as a 

function of true tc values in simulated data. Panels a. and b. are simulated constant-sized 

populations of 10,000. Panels c. and d. are populations that have grown exponentially from 

5,000 to 50,000 over the last 120 generations. Panels a. and c. are evaluated on true known 

haplotypes. Panels b. and d. use statistically phased haplotypes from simulated genotypes. 

Densities of singleton variants is indicated in blue, variants sampled five times in orange, 10 in 

green, and 25 in red. 
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