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Abstract

Summary: Post-mortem damage (PMD) obstructs the proper analysis of ancient DNA samples. Currently,
PMD can only be addressed by adjusting sequencing quality scores or by removing potentially damaged
data. Here we present ATLAS, a suite of methods to analyze ancient samples that properly account for
PMD. It works directly from raw BAM files and contains all necessary methods to infer patterns of PMD,
recalibrate base quality scores and accurately genotype ancient DNA, along with many other useful tools.
ATLAS enables the building of complete and customized pipelines for the analysis of ancient and low-depth
samples in a very user-friendly way. Using simulations we show that, in the presence of PMD, a dedicated
pipeline of ATLAS calls genotypes more accurately than the state of the art pipeline of GATK combined
with mapDamage 2.0.
Availability: ATLAS is an open-source C++ program freely available at https://bitbucket.org/phaentu/atlas.
Contact: Daniel.Wegmann@unifr.ch
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Thanks to technological advances, ancient genomes are currently being
generated a rapid pace. These provide unique insights into past populations
and can substantially enhance the inference of demographic and selective
events that shaped modern genetic diversity (Slatkin and Racimo, 2016).
However, there are two main challenges when genotyping ancient DNA
(aDNA): first, only low numbers of unique aDNA fragments remain for
sequencing and second, these fragments can be subject to post-mortem
DNA damage (PMD).

The most common form of PMD is the deamination of methylated or
unmethylated cytosin (C) to uracil (U) or thymine (T), respectively (Sassa
et al., 2016). In both cases, amplification and sequencing lead to a C →
T transition on the affected and a G → A on the opposite strand (Briggs
and Stenzel, 2007). The probability of a C deamination is highest at the
ends of the DNA fragments, as these are often single-stranded and thus
more exposed to damage, and then decays roughly exponentially towards

the center of the fragment (Jónsson et al., 2013). As these transitions are
artifacts not reflective of the sample’s original DNA sequence they must
not be considered as variants in downstream analyses.

One strategy to reduce the presence of PMD in the data is to treat the
extracted DNA with Uracil-DNA-Glycosylase (UGD) and endonuclease
VIII, which cleave fragments at unmethylated C’s affected by PMD.
However, this technique is restricted to one class of PMD (Briggs et al.,
2010) and leads to a loss of often precious material. Another option is
to reduce the calling of false variants bioinformatically, for instance by
trimming reads of their first few nucleotides, as these show the highest rates
of PMD (e.g. Gamba et al., 2014). This may lead to a problematically high
loss of data, however, if done conservatively. Data loss is much smaller
when using mapDamage 2.0 (Jónsson et al., 2013), which incorporates the
effect of PMD into genotyping pipelines by rescaling the quality scores of
a base according to its probability of being damaged. However, like the
other approaches, mapDamage 2.0 accounts for PMD only indirectly by
reducing the influence of possibly affected bases, and hence also leads to
loss of information.
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Fig. 1. Fraction of alleles not called or wrongly called at sites with sequencing depth > 0 in a simulated sample of ten ancient chromosomes. The calls are classified according to the
underlying true genotype (Ref=reference allele, Alt=alternative allele).

We here present the Analysis Tools for Low-depth and Ancient
Samples (ATLAS), a collection of statistical methods built upon a
dedicated genotyping model that comprehensively accounts for PMD
(Hofmanová et al., 2015; Kousathanas et al., 2016). ATLAS works directly
from raw BAM files and contains all necessary methods to infer patterns
of PMD, recalibrate base quality scores and accurately genotype ancient
samples, as well as to infer population genetic estimates of genetic
diversity directly from genotype likelihoods and produce gVCF files to
call population samples with GATK (DePristo et al., 2011). ATLAS further
includes many auxiliary tools to build complete and customized pipelines
to work with aDNA or other low-depth samples.

2 Methods
While ATLAS offers a large number of useful features, we illustrate here
the most important ones by outlining the pipeline we recommend for
single-end sequencing of ancient samples. We will then briefly discuss
how to use ATLAS on paired-end sequencing data and describe additional
tools likely to be useful to many users. An exhaustive list of all tools
available and details on their usage are available on the project page.

2.1 Recommended pipeline for single-end data

Step 1: Split reads by length. The probability of PMD depends on a
nucleotide’s distances from the fragment ends. These distances are known
for reads spanning the entire fragment, but not for those shorter than their
fragment. ATLAS thus implements a functionality to classify the reads
accordingly in order to infer PMD patterns independently for both groups.

Step 2: Inferring PMD patterns. ATLAS either infers position-
specific PMD patterns, as in MapDamage 2.0 (Jónsson et al., 2013), or
fits a generalized model of exponential decay (Kousathanas et al., 2016).
While the former is more accurate at the end of the reads, imposing the
generalized model reduces estimation noise in the rest of the read where
PMD observations are rare.

Step 3: Recalibrating base quality scores. Base quality scores given
by sequencing machines such as Illumina are typically not reflective of
the true error probability and must be recalibrated. ATLAS offers two
recalibration methods recently developed by us: 1) a direct extension of
Base Quality Score Recalibration (BQSR, DePristo et al., 2011) to aDNA
(Hofmanová et al., 2015) applicable to populations for which detailed

knowledge on known polymorphisms is available, and 2) a reference-free
method that exploits haploid or ultra-conserved regions of the genome
(Kousathanas et al., 2016).

Step 4: Variant Calling. ATLAS implements three different variant
callers: 1) An MLE genotype caller similar to the one by Li (2011). 2)
A Bayesian genotype caller that puts a prior on the genotypes based on
nucleotide frequencies and the heterozygosity of the genomic region. 3) A
Bayesian haploid-level caller particularly suited for very low sequencing
depth that determines the allele with the most evidence to be present using
the same prior. While all these callers are applied to single individuals,
ATLAS also allows calling of population-level samples by producing
individual-specific gVCF files that can be analyzed jointly by GATK.

2.2 Additional functionalities

ATLAS can be readily applied to paired-end data, but requires a different
pipeline, which is detailed on the project page. For instance, paired-
reads from aDNA fragments are usually merged prior to genotyping
as they frequently overlap due to their reduced length. Aside from
genotype calling, ATLAS also estimates local heterozygosity in a genomic
region accounting for the uncertainty of the local genotypes and PMD
(Kousathanas et al., 2016), offers tools to reduce modern contamination
(similar to PMDS Skoglund et al., 2014), generates input files for PSMC
(Li and Durbin, 2011), ANGSD (Nielsen et al., 2011) or BEAGLE (Ayres
et al., 2012) while accounting for PMD, and adjusts the quality scores in
BAM files to reflect the recalibration and base-specific PMD probabilities,
just to name a few.

2.3 Implementation

ATLAS is written in C++ and uses the BamTools library (Barnett et al.,
2011) to parse and write BAM files.

3 Results
We simulated a random sample of ten diploid chromosomes each of ten
Mbp in length with associated genetic variation generated according to
the expected site frequency spectrum for θ = 0.001. We then simulated
ancient single-end sequencing data with errors and PMD at rates commonly
observed following Kousathanas et al. (2016). We used both ATLAS
and GATK with comparable parameters (supplementary section 1) to
recalibrate base quality scores with BQSR and to produce two sets of
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gVCF files. The GATK set was corrected for PMD with mapDamage 2.0.
Variants were then called with GATK’s GenotypeGVCFs jointly for all
chromosomes within a set.

As revealed by comparing them to the latter, a much higher proportion
of sites could be called when analyzing the data with ATLAS than with
GATK regardless of the underlying true genotype (Fig. 1). We note that
this resulted in a slightly higher error rate of ATLAS at low sequencing
depths, but not at depths above five for Ref/Alt and ten for the rest of the
calls. At these depths, ATLAS makes increasingly less errors than GATK,
articularly at sites affected by PMD.

As previously suggested (Hwang et al., 2015), GATK has an inherent
reference bias, as it made more mistakes at heterozygous than at
homozygous reference sites, while ATLAS showed no such difference.
Further, the difference in error rates is highest for the homozygous
reference genotypes, whereas for the heterozygous and homozygous
alternative sites GATK makes almost as many errors as ATLAS. We
tried to remove this bias by testing alternative configurations of GATK
(supplementary section 1), but to no avail.
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