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Abstract

The human leukocyte antigen (HLA) genes play an essential role in immune function.
Typing of HLA alleles is critical for transplantation and is informative for many disease
associations. The high cost of accurate lab-based HLA typing has precluded its use in
large-scale disease-association studies. The development of statistical methods to type
alleles using linkage disequilibrium with nearby SNPs, called HLA imputation, has al-
lowed large cohorts of individuals to be typed accurately, so that massive numbers of
affected individuals and controls may be studied. This has resulted in many important
findings. Several HLA imputation methods have been widely used, however their relative
performance has not been adequately addressed. We have conducted a comprehensive
study to evaluate the most widely used HLA imputation methods. We assembled a
multi-ethnic panel of 10,561 individuals with SNP genotype data and lab-based typing
of alleles at 11 HLA genes at two-field resolution, and used it to train and validate each
method. Use of this panel leads to imputation accuracy far superior to what is currently
publicly available. We present a highly-accurate new imputation method, HLA*IMP:03.
We address the question of optimal use of HLA imputations in tests of genetic associa-
tion, showing that it is usually not necessary to apply a probability threshold to achieve
maximal power. We also investigated the effect on accuracy of SNP density and popula-
tion stratification at the continental level and show that neither of these are a significant
concern.

Introduction

Human leukocyte antigen (HLA) genes are immune-system genes that are of major biolog-
ical and clinical interest. The genes are located in the major histocompatibility complex
(MHC) on chromosome 6. HLA alleles are determinants of transplant compatibility,*
and have been associated with many conditions including autoimmune diseases (e.g.
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multiple sclerosis,* ankylosing spondylitis,* psoriasis,” rheumatoid arthritis®), com-
municable diseases (e.g. cerebral malaria,” HIV & enteric fever®), cancer (e.g. Hodgkin
lymphoma,™ chronic lymphocytic leukemia,™) and adverse drug reactions.*? The al-
leles of these genes are expensive to type at high resolution using lab-based methods,
meaning they are often neglected in studies of genetic association to disease and other
phenotypes. A major advance was the development of statistical methods that use the
correlation structure between HLA genes and nearby single nucleotide polymorphisms
(SNPs) to type unknown HLA alleles from SNP array data.t? This process is known as
HLA imputation. Methods that perform HLA imputation—which are high-throughput,
accurate and relatively low cost—have enabled large-scale studies of genetic variation in
the MHC, and significantly advanced the understanding of several diseases, e.g. Wellcome
Trust Case Control Consortium 2 studies of multiple sclerosis,? ankylosing spondylitis®
and psoriasis,® and other studies. 36414

The first HLA imputation method, HLA*IMPY313 has been used in many asso-
ciation studies. 24006 Qyhsequently other approaches have been developed, includ-
ing HLA*IMP:02,0 HIBAG,8 SNP2HLA ™ MAGprediction?? and others.21"24 These
methods have been applied to large cohort genetic studies. 4 ¢ 1425730 Nych attention has
recently turned to the typing of HLA alleles with NGS data,?"32 however HLA imputa-
tion with SNP genotypes remains an important and powerful tool for the study of the
MHC, primarily because SNP genotyped datasets continue to have larger sample sizes
(see e.g. Ref.®?). The practical use of HLA imputation, including the relative perfor-
mance of the available methods, has not been thoroughly addressed in the literature.
To fully understand the utility and applicability of recent advances, we have under-
taken a large study to explore the factors that affect the accuracy of HLA imputation
and a comparison of four of the most widely used HLA imputation methods: HIBAG,
HLA*IMP:02, SNP2HLA and MAGprediction. We did not evaluate HLA*IMP, as we
consider it to have been superseded by HLA*IMP:02. We have also assessed the per-
formance of the recently-developed method for imputation of KIR gene variation from
SNP genotype data, KIR*IMP,## when adapted to HLA genes, which we have named
HLA*IMP:03 and made available as a web server (see Web Resources).

Each of the HLA imputation methods makes use of a sample (known as a “reference
panel”) of individuals with known HLA and SNP genotypes. The methods involve a
training step, in which a statistical model, relating HLA alleles to patterns of SNPs, is
fitted to the reference panel; and an inference step, where HLA genotypes are imputed
(predicted) using this model for a sample (known as a “study panel”) of individuals
with known SNP genotypes but unknown HLA alleles. In practice, when testing or
validating a method, the HLA alleles of the study panel will be known, but treated as
missing, so that assessments of accuracy can be made. The accuracy of the imputations
depends both on the data (the number of reference individuals and the genetic and ethnic
diversity represented, the number of SNP loci used, how well the reference and study
panels match, and the data quality) and the statistical method. The training step is
typically computationally intensive and ordinarily only needs to be performed once for
a given reference panel and HLA gene. Furthermore, access to reference panel data is
often restricted. For these reasons HLA imputation methods are usually made available
as pre-trained models that can be used with minimal effort to perform HLA imputation
for a study panel without the need for training. In some circumstances, however, HLA
imputation methods will need to be trained with a specific reference panel (e.g. if the
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study panel population is not well represented in the reference panel used for pre-training
and the user has specific data they wish to use for the reference panel).

The methods we investigate, HIBAG, HLA*IMP:02, MAGprediction and SNP2HLA,
have been previously compared with HLA*IMP (the only widely used method at the
time these methods were published) using various reference and study panels, 21820526
but have not been directly compared with each other. For most applications of HLA
imputation it is the performance of the available pre-trained methods that is of relevance,
however direct comparisons of the pre-trained methods (e.g. Ref.%?) have been limited
due to the difficulty in obtaining independent validation datasets that have not been used
to train at least one of the methods. Further, the aggregation of individuals into larger
reference panels, and especially the inclusion of more non-European individuals, means
that previously published estimates of imputation accuracy do not reflect the performance
currently available. We have assessed the performance of currently available pre-trained
HLA imputation methods using an independent European validation dataset, providing
a guide to current best practice.

The assessment of pre-trained HLA imputation methods is of practical relevance, but
it does not allow the differences in performance to be attributed to the different statistical
methods (since methods have been trained with different reference panels). To allow this
comparison we evaluated the HLA imputation methods by training each with the same
reference panel. Moreover, we have assembled the largest HLA reference panel to-date to
perform this evaluation, meaning that the findings establish the best general imputation
performance currently possible among the leading methods.

By combining several previously collected sample sets (see Material and Methods)
we assembled a multi-ethnic panel of 10,561 individuals (8,768 European, 869 Asian,
568 African-American/African and 356 Latino) with SNP genotype data and lab-based
typing of alleles at 11 HLA genes at two-field resolution (which specifies a unique amino
acid sequence; formerly referred to as ‘four-digit’ resolution). Note that not all samples
are typed at all HLA loci (see Material and Methods). The performance of each method
was evaluated via five-fold cross-validation (CV) using the multi-ethnic dataset, and also
using only European individuals to investigate the effect of population stratification at
the continental level. To assess the effect of potential differences in the collection and
typing protocols for the constituent sub-sets of the main data we also carried out an
analysis using European individuals partitioned into independently collected and geno-
typed reference and validation sets. We assessed both the accuracy and calibration of
each method. We also performed CV to assess the performance of the newly-presented
method, HLA*IMP:03, which we found to be the most accurate, when the study panel
is typed on a number of different commercial SNP arrays with differing SNP content.

Finally, we consider the optimal use of HLA imputations in downstream analyses.
Each method provides a probability distribution over all possible genotypes at the im-
puted locus, which reflects the confidence in the imputation. The imputed genotype is
the mode of this probability distribution, which we refer to as the maximum a poste-
riori (MAP) imputation. Subsequent analyses that make use of the MAP imputations
can then be restricted to those with probability greater than a specified call threshold.
Typically, the imposition of a call threshold will result in an improvement in accuracy
for those imputations that are called, at the expense of a lower call rate. In assess-
ing the performance of HLA imputation, previous studies have presented the accuracy
and call rate at call thresholds that have been set without a rigorous analysis (at 0.7
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for HLA*IMP and HLA*IMP:02, or 0.5 for HIBAG). We consider the effect of the call
threshold on the power of statistical tests of association that use the MAP imputation.
An alternative approach, that we also consider, is to use the expected genotype score
or ‘dosage’ for each possible allele. We compare methods on the basis of the optimal
power achieved by these approaches. This not only provides a more meaningful way of
comparing methods, but provides a guide to the optimal use of HLA imputations. In the
association study context, we show that the use of dosages usually attains similar power
to MAP imputations, and if MAP imputations are used then it is usually not necessary
to apply a call threshold to attain optimal power.

Material and Methods

DNA Samples and HLA Typing

We assembled a large dataset by merging data from a number of sources. The full
dataset consisted of 10,561 individuals. Categorized by self-reported ancestry there were
568 African-American/African, 869 Asian, 8,768 European, and 356 Latino individuals.
Each individual was typed at two-field resolution at both alleles for at least one of 11
HLA loci (listed in Table [1) and at SNPs in the extended MHC (xMHC; defined as the
region on chromosome 6 spanning 26.033.5 Mb according to GRCh37 coordinates). The
merged dataset was assembled from the following sources: the 1958 Birth Cohort (see
Web Resources), HapMap CEU individuals®® and CEPH CEU+ additional individuals®?
with HLA typing as described in Ref.™ and quality control (QC) procedures applied
as described in Ref."? (referred to collectively in this paper as “CEU+58"); a Glaxo-
SmithKline dataset (here labeled “GSK”, also known as HLARES in other publications)
and HapMap YRI individuals®® (“YRI”) as described in Ref.1? and QC as described in
Ref ;1% 1000 Genomes Project=®9 (“1000G™) with standard HLA*IMP dataset QC with
the HLA*IMP interface, using a 20% missing data threshold on SNPs and individuals
(see Web Resources); individuals obtained from the Type 1 Diabetes Genetics Consor-
tium 24 (“T1DGC”) as used in Ref.;* an unpublished dataset of African-Americans
provided by colleagues at Kings College, London (“KC”), with Sequence Based Typing
(SBT) of HLA performed at Oklahoma Medical Research Foundation and University of
Alabama and SNP QC as for the 1000G dataset with a missing data threshold of 5%; a
pan-Asian dataset (“PA”) comprising three Southeast Asian populations sampled from
Singapore and HapMap (CHB and JPT) individuals®® (see Web Resources); and an
unpublished dataset of Swedish individuals provided by Karolinska Institutet (“SW?”)
with high-resolution HLA typing (SBT) and QC as for the KC dataset.

The constituent datasets were typed on various SNP arrays, as listed in Table S1.
In addition to the QC applied individually to the data from each source, we performed
further QC steps to allow us to combine these datasets into a single reference panel.
This included: converting the SNPs to GRCh37 coordinates using liftOver (see Web
Resources); converting to a common strand alignment using PLINK (see Web Resources);
and excluding SNPs that could not be aligned or had very different allele frequencies
between the datasets. As part of the merging process we excluded duplicate individuals
(there was overlap between some of the datasets, e.g. CEU and 1000G). We treated
ambiguous HLA types, e.g. G and P coded alleles (see Web Resources), as the most
frequent allele, and did not attempt to account for differences in HLA allele nomenclature
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between the constituent datasets. The number of individuals and the number of SNPs
in the xMHC passing QC for each data source is shown in Table S1. We adopted two
different approaches to the merging of SNP data. Firstly, we merged datasets using
overlapping SNP genotypes. Secondly, we merged datasets after imputing SNPs within
each dataset. In the second merged dataset with imputed SNPs, haplotypes were phased
(required by HLA*IMP:03). We produced two sets of phasings: SNPs and HLA alleles
phased together (used as a reference panel) and SNPs phased without HLA (used for
validation). The procedure for merging datasets is shown in Figure S1 and described
below.

The merged dataset with overlapping SNPs was created separately for each HLA
locus because of the differing extent of lab-based typing. Specifically, for each locus we
included only the individuals which had lab-based HLA types for that locus, and only the
SNPs that were polymorphic and were typed in at least 98% of that set of individuals.
The number of individuals and number of SNPs passing QC in the merged dataset with
overlapping SNPs at each HLA locus is shown in Table [I] and Table S2.

The merged dataset with imputed SNPs was formed by first imputing SNPs within
each dataset with the Michigan Imputation Server (imputation with Minimac3,4? see
Web Resources), selecting the appropriate population for QC, SHAPEIT#3 for pre-
phasing, and 1000 Genomes Phase 3 version 5 as the reference panel. Individuals in
each dataset belonging to each of the 1000 Genomes “super populations” (Ad Mixed
American, African, East Asian, European) were imputed separately, to make full use of
the available population-specific QC, and use all genotyped SNPs (not just overlapping
SNPs). The datasets with separately imputed SNP genotypes were merged by retaining
only biallelic SNPs directly genotyped in at least one dataset and with R-squared output
by Minimac3 greater than 0.8 in all datasets. We used a cut-off more stringent than a
standard cut-off of 0.3 as inspection of the distribution of R-squared values showed that
this had a small effect on the number of SNPs retained. We did not filter imputed SNPs
on MAF < 0.01 as usual as we were combining samples of different ethnicity and had
already restricted the imputed SNPs to those directly genotyped in at least one dataset.
We then retained SNPs with at least 95% of posteriors greater than 0.9 in all imputed
datasets, and at least 98% of posteriors greater than 0.9 in the merged dataset. We
inspected the distribution of posteriors to set the above stringent cut-offs. This resulted
in a single merged dataset to be used for all HLA loci with 6,452 SNPs across the xMHC.

The merged dataset with imputed SNPs was phased (using only SNP genotypes,
i.e. without HLA types) using SHAPEIT (version 2) and the 1000 Genomes Phase 3
reference panel. These phased SNPs were to be used for validation, so 916 samples that
were in both the merged dataset and the phasing reference panel were removed from the
reference panel, to mirror the typical situation where study samples do not have known
phase.

We, finally, phased haplotypes of HLA alleles and SNPs in the merged dataset with
imputed SNPs. This was performed separately for each HLA locus due to the differ-
ent extent of HLA typing for each locus. There were some samples with previously
determined phasing of HLA alleles and SNPs (87 CEU+58 and 60 YRI individuals, see
Ref.™¥). We attempted to resolve the phase of HLA alleles and the imputed SNPs for
these samples. To do this, the imputed SNPs were phased with SHAPEIT using the 1000
Genomes Phase 3 reference panel, or in the case of samples appearing in the reference
panel we used the reference haplotypes. We then matched these phased SNP haplotypes
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(with imputed SNPs) with the original SNP haplotypes (with matching HLA phase) by
inspection of the number of identical SNPs. This resolved the phasing of HLA alleles in
the haplotypes with imputed SNPs in 67 CEU+4-58 and 56 YRI individuals, with those
not resolved likely due to phasing switch errors. We then attempted to resolve the phase
of HLA alleles and SNPs in all remaining samples. SHAPEIT was used with the 123
samples with resolved HLA phase as a reference panel. Each HLA locus was phased
separately using only samples with HLA typed at both alleles. Due to the limitations
of SHAPEIT, each allele of an HLA gene was represented as a separate genetic variant,
coded on the basis of presence/absence, and with position at the center of the HLA
locus. SHAPEIT was run with the number of conditioning states set to 1000 (increased
from default of 100). Since each HLA allele was represented as a separate variant it was
possible for the two HLA alleles of an individual to be erroneously phased to the same
haplotype. Across the 11 HLA loci, this occurred in at most 0.3% of samples, and any
individual for which this occurred was discarded from the dataset.

HLA Imputation

HIBAG version 1.4.0 (with R statistical software version 3.2.0) was used with SNPs
in the recommended flanking region 500 kb each side of the HLA locus, and all default
settings (including 100 classifiers). HIBAG was not run for HLA-DRB3 and -DRB/ as
it does not provide functionality to select the nearby SNPs to be used for imputation at
these HLA loci.

HLA*IMP:02 was run with parameter settings modified from those described in its
original publication” to accommodate the large number of individuals in the reference
panel, which has more than doubled since the previous study, while achieving feasible
computational and memory requirements (a few days of running time for training on a
high-performance computing cluster and less than 250 GB memory). Our investigations
using moderately sized reference samples showed that the parameters could be modified
to run faster and use less memory without noticeable loss of accuracy and that any po-
tentially small decrease in accuracy due to changes in the settings is compensated by the
ability to handle a larger reference panel (data not shown). The modified settings (refer
to the original paper for definitions”) were: localization feature turned off (previously
turned on at all loci except HLA-B and -DRB1); graph sampling error, mg, and graph
building error, mpg, probabilities both set to 0.001 (previously both were set to 0.002);
and the number of sampled haplotype pairs, Ng, set to 5 (previously 50). We also made
changes to how the SNPs used in imputation were selected. Previously, HLA*IMP:02
made use of the nearest 300 SNPs on either side of the center of the HLA locus, excluding
any SNPs that gave a p-value less than 107> on a test for deviation from Hardy-Weinberg
equilibrium (HWE). Here we included the nearest 300 SNPs on either side of the center
of the HLA locus and additionally all SNPs in the region flanking 500 kb either side of
the HLA locus, and did not exclude any SNPs due to deviation from HWE. The inclusion
of additional SNPs in the region flanking 500 kb either side of the HLA locus was made
to allow a sufficiently wide SNP window in regions of high SNP density. It resulted in
the inclusion of all SNPs used by HIBAG, but this was only an additional 12 SNPs at
HLA-B, 53 at HLA-DPA1, 35 at HLA-DPBI1, and none at the other HLA loci. We also
ran a version of HLA*IMP:02 with the reference panel set as pre-phased haplotypes, and
all other settings unchanged (referred to below as ‘HLA*IMP:02 (phased)’).
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HLA*IMP:03 was applied to each HLA locus using phased haplotypes with SNPs
within 500 kb either side of each locus, 400 trees, and with the parameter m (the number
of SNPs randomly sampled as candidates for each split of each tree) set to 100. For
training, we used the version of the data where both SNPs and HLA alleles were phased.
For inference, we used the version of the data where only the SNPs were phased (to more
properly mimic how real study data would be prepared).

The command line version of MAGprediction was run (with Matlab Compiler Run-
time version 7.14).

SNP2HLA version 1.0.3 (with PLINK version 1.07,4% and Beagle version 3.0.44%)
was used. The ‘MakeReference’ script was run to perform training, followed by the
‘SNP2HLA’ script for inference, both with window size set to the default of 1000.

Assessing Imputation Performance

We conducted a number of experiments, described below, to assess the performance
of the HLA imputation methods. In each experiment imputed HLA alleles are compared
with the known, lab-derived, HLA types at two-field resolution, with the exception of
HLA-DQA1. At this locus we assessed performance at the resolution of G groups. That
is, imputations were considered correct if they belonged to the same G allele group as the
lab-derived HLA type. This was done because the TIDGC samples were typed at the
resolution of G groups, but the other samples were typed at higher resolution without
ambiguous G alleles. (At this locus 12.0% of alleles in the non-T1DGC samples were not
present in the T1IDGC samples, instead represented as the most common allele in the G
group.) There wasn’t evidence of this issue at other HLA loci.

Each method reports a posterior probability for imputed HLA alleles. These proba-
bilities are potentially reflective of the confidence one can ascribe to a given imputation
(see the assessment of calibration below). HLA*IMP:02, HLA*IMP:03 and SNP2HLA
produce a posterior probability for each imputed allele, i.e. two probabilities for each im-
puted genotype (although this is not provided directly by SNP2HLA), whereas HIBAG
and MAGprediction produce a single probability for each imputed genotype as a whole.
Although the probabilities are not directly comparable, to enable some comparison we
treated the HIBAG and MAGprediction probabilities as applying individually to each al-
lele. For a given call threshold, T, 0 < T < 1, the accuracy of imputations was calculated
as the proportion of those imputed alleles with posterior greater than or equal to T that
match the known HLA types. In the case of an imputed homozygous genotype, only the
allele with the greater posterior was considered correct if only one copy of the imputed
allele is present in the lab-based genotype (i.e. where the latter is heterozygous). The
associated call rate was calculated as the proportion of imputed alleles with posterior
probability greater than or equal to T'. For each estimate of accuracy, we calculated a
95% Bayesian credible interval on the basis of a binomial model and a uniform prior dis-
tribution (in the context of cross-validation this should be treated as an approximation
only, see Ref.*# for further discussion).

We measure the impact of using HLA imputations on the power of a statistical test
of association, where each allele is tested by coding its absence and presence as 0 and 1,
respectively, and the genotype of each individual is coded as 0, 1 or 2 (i.e. a single allele is
compared against all other alleles). The situation is then analogous to that for a biallelic
marker. The most useful measure of the effectiveness of imputation in this scenario is
the effective sample size. The effective sample size with perfectly typed alleles has power
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equivalent to that of the actual study sample size with (imperfect) imputations. A more
convenient quantity, which we use, is the sample size ratio, the ratio of the effective
sample size to the actual study sample size. Under certain assumptions (see Appendix
A) the sample size ratio is given by the square of the Pearson correlation coefficient
between the true genotypes and MAP imputed genotypes (r?). When a call threshold T
is imposed it is apparent that the quantity r? should be replaced by crr2, where cr is
the call rate at threshold 7" and 72 is based on only those imputations that are called (see
Appendix A). An alternative to the use of the MAP imputed genotypes is the imputed
dosage, 47 the expected number of copies of each allele carried by each individual (a
continuous value between 0 and 2). If MAP imputed genotypes are replaced by imputed
dosages for each allele then the relevant quantity is the 2 between the true genotypes
and imputed dosages. To assess the performance of the imputation methods in terms of
power to detect associations for each allele we computed the sample size ratio for MAP
imputations for a range of call thresholds and for imputed dosages.

A desirable property of imputation methods is that they be ‘well-calibrated’; in the
sense that for all imputations with associated probabilities of, for example, 0.9, 90% of
such imputations are correct. The idea is that the probabilities reported by the model
may be meaningfully interpreted. We assessed the calibration of the methods by binning
the imputed alleles by their posterior probabilities and comparing the mean probability
in each bin to the imputation accuracy for that bin.

Validation experiments

A number of validation experiments were performed, as listed in Table S3 and now
described. Each validation experiment was performed separately for each HLA locus.
We first compared the accuracy of HLA imputation methods using an identical reference
panel. We partitioned the dataset into a reference panel and a study panel (here referred
to as a “validation set” as the HLA types for these samples are known, and are used for
comparison to the imputed HLA types) multiple times, as described below, allowing for
several replications of HLA imputation testing using different reference and validation
sets. We assessed the accuracy of each HLA imputation method on each reference and
validation set pair. Unless otherwise stated, both the reference and validation set were
restricted to individuals with both alleles typed to two-field resolution at the HLA locus.
Specifically, we performed a five-fold CV, whereby the individuals are divided randomly
into five sets (called “folds”), training is performed using four of the folds as the reference
set and the remaining fold is imputed and used for testing accuracy. This is repeated five
times, each time with a different fold as the validation set, resulting in a single imputation
being made for each sample.

Five-fold CV was performed for a number of different versions of the merged dataset.
The first CV experiment used the merged dataset with overlapping SNPs, and included
all individuals (i.e. we used a multi-population reference panel). Despite considerable
effort, we were unable to train MAGprediction on the CV dataset, and have therefore
excluded it from this and the subsequent CV experiments. The version of HLA*IMP:02
with phased reference panel and HLA*IMP:03 made use of the phased haplotype version
of the merged dataset. The phasing was performed using imputed SNPs, however here
the SNPs were restricted to those used for the other methods (i.e. imputed SNPs were
excluded for a fair comparison). The validation sets for HLA*IMP:03 made use of the
haplotype phasing that was performed without HLA types.
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The dataset included a number of individuals that were typed to two-field resolution
for only one HLA allele (see Table S2). In order to test the effect of their inclusion,
for HLA*IMP:02 and SNP2HLA we repeated CV with these extra individuals added to
the reference panel, but not to the validation set, and we omitted the second allele (i.e.
treated it as missing data). When running SNP2HLA in this manner for HLA-B, we
found that two of the five folds resulted in the required memory exceeding 500 GB; we
reduced the window size to 500 for these two folds. This extra analysis was not run
with HIBAG because it can only handle reference individuals that are typed at both
alleles, and HLA*IMP:03 was not run as haplotype phasing was not available for these
individuals.

We repeated CV using the same assignment of individuals to folds in the first CV
above, but with non-European individuals excluded. By comparing to the results of
the first analysis, we aimed to investigate the effect of the presence of non-European
individuals in the reference panel on imputations for European individuals, and more
generally to test the effect of using a multi-population reference panel on imputation
accuracy for study panels derived from a single population.

The random partitioning of individuals for CV means that individuals from each
data source are likely to be represented in both the training and validation sets. Thus,
any biases, or indeed systematic errors, present in one of the constituent data sources
are likely to be represented in both the reference and validation datasets, potentially
somewhat ameliorating their effect on the validation study. We therefore carried out a
validation analysis in which the training and validation sets were composed exclusively
of different data sources (i.e. independently ascertained). This is closer to the situation
encountered by users of HLA imputation in practice. Training was performed using the
T1DGC dataset (5,192 European individuals) and inferences made on all other European
individuals (3,587 individuals). This analysis was carried out with the eight HLA loci
for which the TIDGC data is typed (see Table [L]).

We next assessed the performance of pre-trained models (i.e. methods not necessar-
ily trained with the same reference panel) by using the TIDGC dataset (composed of
5,192 European individuals, 7,135 SNPs typed on Illumina HumanImmuno BeadChip)
as the validation set. For HIBAG we used the pre-trained ImmunoChip European model
(“ImmunoChip-European-HLA4-hg18. RData”; n.b. separate models are available for dif-
ferent SNP arrays and populations), with assembly set to “hg18” (which was the assembly
of both the model and validation set), SNP matching based on position, and other op-
tions set to their default values. Across the seven HLA loci imputed, between 4.1% and
16.8% of SNPs in the HIBAG model were missing from the validation set. Pre-trained
MAGprediction was run using the “General” models (which use a general set of HapMap
SNPs), following instructions to first impute SNPs in the validation set using IMPUTE2
(v2.3.2)48 with the provided genetic map and reference panel. SNP2HLA is not currently
available with a European reference panel so we did not include it in this comparison.
The currently available versions of HLA*IMP:02 (available via Affymetrix as Axiom HLA
Analysis software, see Web Resources) and HLA*IMP:03 make use of the entire merged
dataset (including TIDGC), so we cannot use them directly to assess performance in the
T1DGC dataset. Instead, we assessed two sets of imputations: (i) the CV experiment
using the multi-population reference panel described above, and (ii) imputation with all
T1DGC samples removed from the reference panel.

We carried out additional analyses to investigate the performance of HLA*IMP:03 in
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practical settings, since it was found to be the most accurate in the above analyses and is
newly presented in this paper. The effect of increased SNP density in the reference panel
through the use of imputed SNPs was investigated. As HLA imputation reference panels
increase in size with the addition of datasets possibly typed on different SNP arrays, the
overlap between SNPs typed in reference individuals may decrease, potentially leading to
decreased imputation accuracy. SNP imputation, however, can be used to merge datasets
without a decrease in SNP density. We performed five-fold CV with HLA*IMP:03 using
the merged dataset with imputed SNPs.

We also investigated the performance of HLA*IMP:03 when using only SNPs typed
on common SNP arrays, which is of practical relevance as study panels will typically be
typed on a specific array. We considered a number of different Illumina and Affymetrix
arrays (listed in Table S6), obtaining a list of SNPs for each one from the manufacturers’
websites (see Web Resources). For each array, we trained HLA*IMP:03 using the merged
dataset with imputed SNPs, but with SNPs restricted to those typed on the array by
matching on the GRCh37 genomic coordinates, and used the out-of-bag (OOB) estimate
of imputation accuracy (the latter was done for computational convenience; see Ref.=% for
a description of OOB and a comparison to CV). This choice of SNP set mimics the (best-
case) scenario where all the SNPs in the intersection are perfectly typed in the study
panel; in practice, typing for some SNPs will most likely fail, leading to possibly lower
imputation accuracy. For this analysis, when the number of SNPs in the intersection was
fewer than 300, we set m to be one third of that number (but always at least m = 1).

Results

Cross-validation accuracy

The accuracy (calculated with call threshold T = 0, unless otherwise stated) of HLA
imputation with each method at two-field resolution for five-fold CV using all individuals
typed at two-fields at both alleles at each of 11 HLA loci (HLA-A, -B, -C, -DQA1, -DQB1,
-DRB1, -DRB3, -DRBY4, -DRB5, -DPA1 and -DPB1) was calculated for individuals in
each of the four major populations in the dataset, and is presented in Table [2] and Fig-
ure[I] Results for 13 populations in the 1000G dataset are included in Table S4. HIBAG,
HLA*IMP:02 and HLA*IMP:03 had similar imputation accuracy (shown by overlapping
credible intervals) across each of the HLA loci and populations with a few exceptions: HI-
BAG performed worse at HLA-A in Asians; HLA*IMP:02 performed worse at HLA-B in
Asians and Europeans, and at HLA-DQB1 in Europeans; and HLA*IMP:03 was superior
at HLA-DRBI1. Despite the similarity in performance of these methods, there tended to
be an ordering from best to worse of HLA*IMP:03, HIBAG, HLA*IMP:02. This ordering
is also consistent with the deviations from similar performance listed above. SNP2HLA
consistently performed substantially worse than the other three methods. Imputations
for Europeans were more accurate than for non-Europeans, which was expected given
the greater number of European individuals in the reference panel.

To assess the effect of pre-phasing the data on imputation accuracy we ran HLA*IMP:02
with a training set of phased haplotypes (HLA*IMP:02 (phased)) rather than genotypes
(HLA*IMP:02). This also allows us to understand whether the difference in accuracy
between HLA*IMP:02 and HLA*IMP:03 can be accounted for by pre-phasing. As shown
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in Table [2 and Figure [T} pre-phasing did not result in significant differences in imputa-
tion accuracy for HLA*IMP:02. HLA*IMP:02 with pre-phasing was not considered in
subsequent analyses.

Five-fold CV repeated for HLA*IMP:02 and SNP2HLA with additional training in-
dividuals typed at two-fields at only one allele (with the other allele set to missing), and
with the same validation individuals, showed no change in accuracy (data not shown).

European-only reference panel

The accuracy for European individuals at two-fields for five-fold CV when train-
ing with all individuals was compared against the accuracy obtained using the same
folds with non-Europeans removed, as shown in Figure S2. Removing non-European
individuals from the training sets did not result in an improvement in accuracy for Eu-
ropean individuals at any locus for any method. Rather, it had either a negligible or
slightly detrimental effect, the latter particularly for HLA*IMP:02 at HLA-DPA1 and
for SNP2HLA at many of the genes.

Validation with independently ascertained samples

The accuracy for European individuals in the CEU+-58, GSK, 1000G and SW datasets
(the datasets other than TIDGC containing European individuals) after training each
method on the TIDGC dataset is shown in Figure S3 and Table S5. Accuracy aggregated

over all validation individuals is given in Figure S4. The results were consistent with those
for Europeans in five-fold CV (Figure [I[C).

Pre-trained methods

The above results involve comparisons of the imputation methods when used with
identical training data. Accuracy for the pre-trained methods, which each use different
training data, with validation in TIDGC dataset, are presented in Table [3|and Figure
As mentioned in the Material and Methods section, SNP2HLA was not included in this
analysis as it is not currently publicly available with a European reference panel.

The publicly available pre-trained versions of HLA*IMP:02 and HLA*IMP:03 could
not be assessed in this manner since they include all of the TIDGC data in their reference
panels. Instead we assessed two versions of these two methods: (i) five-fold CV; and (ii)
all TIDGC data omitted from the reference panel. Since version (i) makes use of some
T1DGC data to train each fold of CV, it may have some advantage due to ascertain-
ment bias and not reflect performance in other independent European validation sets.
This is not a concern for version (ii), however it may underestimate the performance of
HLA*IMP:02 and HLA*IMP:03 relative to other methods in other independent valida-
tion sets, since the actual pre-trained versions have a larger reference panel. Thus these
two versions could be considered as approximate lower and upper bounds on the relative
performance of HLA*IMP:02 and HLA*IMP:03 to the other methods.

The CV versions of HLA*IMP:02 and HLA*IMP:03 were the best performing meth-
ods at each locus (with HLA*IMP:02 equal second with another method at some loci),
and with HLA*IMP:03 better or equal to HLA*IMP:02 at each locus. HLA*IMP:03,
with T1IDGC data excluded from training, was better than pre-trained HIBAG at all
loci except HLA-DQBI, and better than or equal to HLA*IMP:02, with TIDGC data
excluded from training, at all loci. Pre-trained HIBAG outperformed HLA*IMP:02, with
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T1DGC data excluded from training, at HLA-DQB1 and HLA-DPB1, but was substan-
tially worse at HLA-DQA1.

Pre-trained MAGprediction was found to have extraordinarily poor accuracy. This
seems to be due to different treatment of ambiguous alleles. For example, the alleles
A*02:01, A*03:01 and A*24:02 (all ambiguous G alleles representing 25.8%, 11.8% and
11.6% of alleles in the TIDGC dataset, respectively) were most frequently imputed as
A*02:92, A*03:91 and A*2/:91, respectively, by MAGprediction. (Each of these imputed
alleles was not present in the merged dataset.) We did not attempt to investigate this
further.

HLA*IMP:03 in practical settings

The accuracy of HLA*IMP:03 using imputed SNPs (as described in the Material and
Methods section) and imputed SNPs subset to those typed on common SNP arrays is
provided in Table S6. The number of SNPs used for each SNP array is shown in Table
S7. Using the extra imputed SNPs has no effect on accuracy. For most SNP arrays
there is no loss of accuracy when using only SNPs typed on the array, and where there is
loss of accuracy this is clearly explained by insufficient typing of SNPs across the xMHC
(e.g. Affymetrix GeneChip Human Mapping 10K 2.0 and 100K Set, Illumina Human
OmnilS-8 v1.0).

Effect of call threshold on accuracy

Accuracy is plotted against call rate for each HLA locus in Figure S5. The accuracy
at a call rate of 1 is the unthresholded accuracy (already presented above in Table
and Figure (1} but in this case aggregated over all populations). The plots demonstrate
the trade-off between the accuracy of called imputations and call rate. The optimal call
threshold depends on the intended use of the imputations (i.e. specification of a loss
function) and is considered below for use in a statistical test of genetic association.

Model calibration

The calibration of each method is shown in Figure S6. Well-calibrated predictions
should have plotted points in the calibration plots that lie close to the diagonal line,
although they may deviate by chance. This is taken into account by the credible interval,
which for a well-calibrated model we expect to include the diagonal line at a rate of
95%. HLA*IMP:02 and SNP2HLA are the best-calibrated methods over the full range of
posteriors, although HLA*IMP:02 tends to overestimate accuracy for higher posteriors.
Both HIBAG and HLA*IMP:03 posteriors tend to underestimate accuracy, which in the
case of HIBAG may be due to posteriors being provided per genotype rather than per
allele (which is the basis on which accuracy was calculated). The distribution of posterior
probabilities is shown in Figure S7. All methods have very high median posteriors,
which is to be expected given that the methods are highly accurate and reasonably
well-calibrated.

Sample size ratio

We investigated the performance of HLA imputation when used in a test of genetic
association for each allele (see Material and Methods) by considering the sample size ratio
for each allele in the CV analysis with the multi-population reference panel, calculated
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using only the European individuals. We considered three versions of the sample size
ratio based on: (i) unthresholded MAP imputations (call threshold T' = 0), (ii) MAP
imputations with call threshold that maximizes sample size ratio (optimal call threshold)
set separately for each allele, and (iii) imputed dosage.

An illustrative example of how sample size ratio is affected by call threshold for a
single allele (the most common allele of HLA-B in European individuals, HLA-B*08:01,
allele frequency (AF) 13%) is provided in Figure S8. For this allele we observe a modest
improvement in accuracy (sensitivity and specificity) with increasing call threshold that
is not sufficient to compensate for the decreasing call rate, such that the optimal call
threshold is 0.

The relationship between sample size ratio and call threshold is shown for all alleles of
HLA-B, stratified by AF, in Figure S9. For common alleles (AF > 5%) the relationship
between sample size ratio and call threshold is consistent and the optimal threshold is
always very close to 0. For alleles of moderate frequency (1% < AF < 5%) the relationship
between sample size ratio and call threshold is smooth; the optimal threshold is variable
across alleles but close to 0 for many alleles. For low frequency alleles (AF < 1%) the
relationship between sample size ratio and call threshold is often noisy, which is to be
expected for the rarest alleles. The relationships were consistent across all imputation
methods. The same relationships were also found for other HLA loci (data not shown).

The two versions of sample size ratio based on MAP imputations, unthresholded and
with optimal call threshold, are compared for each imputation method and all HLA
genes and alleles, stratified by AF, in Figure S10. For most common alleles (AF >
1%) using the optimal call threshold does not improve the sample size ratio. For low
frequency alleles (AF < 1%) the optimal call threshold does often improve sample size
ratio, however the low AF means that power usually remains very low for these alleles,
so there is little benefit in using the optimal call threshold (see illustrative example of
power estimates below and Figure [3B).

Sample size ratio based on dosages and MAP imputations with optimal threshold
are similarly compared in Figure S11. Our observations are very similar; differences
in sample size ratio are mainly observed for low frequency alleles, for which power will
usually be low for both approaches. When there is a difference in sample size ratio at low
frequency alleles the MAP imputations with optimal threshold are usually better. We
note there are a number of very rare alleles present in the reference panel that are never
imputed. The MAP sample size ratio has been set to zero for these alleles, reflecting the
fact that power for detecting a genetic association is effectively zero. The dosage-based
sample size ratio for these alleles is often non-zero.

Sample size ratios from both unthresholded MAP imputations and dosages, for alleles
from all 11 imputed HLA loci with AF > 1%, are compared pairwise between imputation
methods in Figure S12. HIBAG and HLA*IMP:03 achieve best sample size ratios and are
approximately equivalent in performance, both outperforming the other two methods.
HLA*IMP:02 is the next best method, outperforming SNP2HLA.

Sample size ratio from dosages is plotted against AF, at all HLA loci in Figure S13.
Sample size ratio is variable across AFs, although low sample size ratios occur more
often for low frequency alleles. (The plots do not show alleles with AF < 1% for which
sample size ratios can be very low.) The relative performance of imputation methods
is as described above and consistent across alleles at a given HLA locus, although the
magnitude of differences between methods is variable across loci.
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To illustrate the impact of imputation directly on power we estimated power for a
standard association test (using the formula from Ref.#?) conducted at a hypothetical
allele for a range of values of the sample size ratio (Figure ) We assumed an odds
ratio of 1.5, a p-value threshold of 5 x 102, 5000 cases and 5000 controls, and varied AF.
Standard power curves for the same scenario but specifically for an AF of 5% are shown
in Figure 3B. In this example we see how differences in sample size ratio, of the range
observed in this study, translate into meaningful differences in power.

Discussion

We have shown that the aggregation of the largest-to-date HLA reference panel leads
to much higher imputation accuracy when used with leading methods. This ensures high
throughput and accurate HLA typing, and consequently increased statistical power for
association studies with HLA alleles. Our analysis has allowed comparison of the leading
HLA imputation methods on the basis of: (i) accuracy achieved in Europeans with the
currently available pre-trained methods; and (ii) accuracy when using each method with
an identical reference panel. In the validation analyses we found consistent relative perfor-
mance of the methods, assessed by accuracy at two-field resolution: HLA*IMP:03 is the
best performing, closely followed by HIBAG, followed by HLA*IMP:02, while SNP2HLA
had significantly worse performance. MAGprediction gave unsatisfactory performance,
both in its inability to be run for a large reference panel and the low accuracy of the
pre-trained method due to problematic allele codings.

Use of a multi-population reference panel has a positive or neutral effect on imputation
accuracy of Europeans (depending on the method and HLA locus), however we did not
determine whether imputation of non-Europeans is improved by inclusion of European
reference samples. A multi-population panel is convenient as it does not require ascer-
tainment of the ethnicity of study individuals and the use of different population-specific
models.

Use of HLA*IMP:03 with increased SNP density from SNPs imputed in the reference
panel did not have an effect on accuracy. This suggests that the use of overlapping
SNPs when merging reference panels has not decreased SNP density yet to a level where
imputation accuracy is degraded. We also found that HLA*IMP:03 is robust to the use
of only those SNPs typed on common SNP arrays.

Our analysis with the sample size ratio showed that use of imputed dosages gives
similar power in tests of genetic association to that obtained with the MAP imputed
genotype, at least for alleles that are not too rare (frequency greater than 1%). In the
context of SNP imputation, it has been shown both empirically®® and theoretically“”
that the allelic dosage results in superior power, although in Ref.2% it was found that
for high accuracy imputations (r2 > 0.9) there is little loss of power using the MAP
imputations, and the gain from use of dosages is greatest at intermediate posteriors. In
our context, the vast majority of imputations are done with high accuracy, which would
explain why we saw that both approaches led to similar power. We recommend that if
MAP imputations are used then no call threshold should be imposed, as generally the
improvement in accuracy does not compensate for the reduction in call rate.

Imputation was computationally fastest for HIBAG and HLA*IMP:03 (a single anal-
ysis, e.g. single fold in CV for one HLA locus, took several minutes on a high performance
cluster). Imputation for HLA*IMP:02 and SNP2HLA took longer (up to several hours),
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although for HLA*IMP:02 and HLA*IMP:03 imputations are performed on a web server,
so there are no computational requirements for the user. Imputation with SNP2HLA was
most burdensome due to severe memory requirements (more than 250 GB RAM in some
cases), making its use with a reference panel of the size presented here impractical for
most users. Moreover SNP2HLA is now provided with only a Pan-Asian reference panel,
so imputation in other populations requires the user to obtain their own reference panel.
(SNP2HLA is the only method that requires the reference panel in order to perform
imputations; other methods allow use of only a pre-trained statistical model.) With the
exception of SNP2HLA, training of the methods takes longer than imputation, taking
several days for HIBAG and HLA*IMP:02 for a single analysis, but less than an hour
for HLA*IMP:03. We note that HLA*IMP:02 and HLA*IMP:03 have not been made
available for users to train with their own reference panel.

The difference in accuracy obtained for European and non-Europeans demonstrates
the importance of large numbers of reference samples that match the target population.
This is also shown by comparison with previous studies. The accuracy of HIBAG was
assessed using approximately 3000 Japanese individuals, split into equal-sized training
and validation sets,®Y with accuracy in the range of 95.7% to 98.9% for HLA-A, -B,
-DRB1, -D@B1 and -DPBI. In the CV analysis, accuracy for the 80 JPT individuals
in the 1000 Genomes dataset at these loci was in the range 87.5% to 93.6% for HIBAG
and 89.4% to 94.9% for HLA*IMP:03 (the best performing method, see Table S4). This
demonstrates the gain in accuracy that can be achieved with a larger number of reference
samples that match the study panel.

Imputations using HLA*IMP, HLA*IMP:02 and SNP2HLA for HLA-DRB1 were
assessed in 161 Finnish individuals, with all methods achieving accuracy no greater than
25% at two-fields,” however the pre-trained models used included only three Finnish
individuals. In contrast, in the five-fold CV we found that accuracy with HLA*IMP:03
was 99.5% at HLA-DRBI1 for the 92 Finnish individuals in the 1000 Genomes dataset,
and at least 96.2% at the other four typed HLA loci (HLA-A, -B, -C and -DQBI1, see
Table S4).

The mapping of HLA alleles to amino acid sequences™ allows association testing
of individual amino acid sites. We note that this functionality is implemented in the
HLA*IMP:03 web server. The HLA*IMP:03 web server also includes a tool for the
calculation of allele-specific power based on sample size ratio from the CV analysis, with
user specified values of OR, p-value threshold and sample size.

Finally, we note that more sophisticated treatment of ambiguous HLA alleles is likely
to lead to further improvement in HLA imputation accuracy. The extent of allelic am-
biguity can vary between independently typed samples (which was the case here for
HLA-DQA1), and thus we advise that caution should be taken when making inferences
based on imputation of potentially ambiguous HLA alleles.

Appendix A: Sample size ratio for thresholded calls

Here we derive the effective sample size and sample size ratio of an association test
that uses (imperfectly) imputed genotypes, and relate them to standard imputation
accuracy measures. Where the goal of imputation is to conduct an association study,
these are the most relevant measures of the effectiveness of imputation, rather than raw
imputation accuracy.
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As explained in the Material and Methods, a test of association considering a single
allele with a presence/absence coding is equivalent to a biallelic marker. We can therefore
use results derived for such markers. We follow closely the derivation for SNPs by
Ref.;®2 these describe a model of two SNPs in linkage disequilibrium, but the results
apply equally well here for comparing two sets of biallelic types that are meant to be
correlated. Specifically, let A represent the true type and B the imputed type at the
locus of interest. The results of Ref.?2 then imply that the effective sample size for a
standard trend test is Ny = Npr2, where Ng is the actual study sample size and r2
is Pearson’s correlation coefficient comparing the imputed and true calls. This assumes
no missing calls in the sample. If we impose a call threshold, resulting in a call rate of
¢, then we only have Npgc of the sample remaining. Applying the above result to this
reduced sample gives the overall effective sample size as Npcr?.

Both of these two multiplicative factors depend on the call threshold. They represent
different and (typically) opposing effects. The call rate, ¢, will decrease as the threshold
becomes more stringent, due to the exclusion of (hopefully) the less certain imputations.
Conversely, the correlation, r2, should increase if the remaining imputations are indeed
more accurate. The above formula shows us how to combine these two factors in order
to assess their joint effect on power.

The correlation is a natural parameter when considering two SNPs in LD, but is not
so natural in the context of imputation. We can re-express it in more standard quantities.
Adopting the notation from Ref.®? and letting the allele of interest be coded as 1 and the
(pooled) remaining alleles as 0, the true allele frequency (amongst the genotypes with
non-null calls) is f4 = Pr(4A = 1), the allele frequency amongst the imputation calls is
fB =Pr(B=1), and we also have g =Pr(A=1|B=0)and ¢y =Pr(A=1|B=1).
The correlation is then a function of these, r = (q1 — qo)\/(f5 (1 — fB)) / (fa (1 — fa)).
Rather than gg and ¢, here it is more natural to use a parameterisation in terms of the
sensitivity, s = Pr(B =1 | A = 1), and the specificity, t = Pr(B=0| A =0). It can be
shown that 1 = sfa/fB, o = (1—35)fa/(1— fp) and fp = (1 —t)(1 — fa) + sfa, which
after some manipulation gives,

2= (s+t—1)2 .
ORI =y

Therefore, the overall sample size ratio is,

Na_ o c(s+t—1)2
Np [(s+t-1)+ 32 s+t -1+ 22|

In principle, we could use the above expression to calculate the sample size ratio for
a given application of HLA imputation, by providing assumed values or estimates of
each of the quantities (allele frequency, call rate, sensitivity and specificity). Here we
have taken the simpler approach of simply calculating the correlation between imputed
and true types from the validation analyses. We did this separately for each of the four
population groups, to provide estimates relevant for imputation within each of these
populations.

16


https://doi.org/10.1101/091009

bioRxiv preprint doi: https://doi.org/10.1101/091009; this version posted December 9, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Conflict of Interest

A.D., P.D., G.M. and S.L. are partners in Peptide Groove LLP. Peptide Groove has
licensed HLA typing technology to Affymetrix Ltd.

Supplemental Data

Supplemental Data include 13 figures and 7 tables.

Acknowledgments

We wish to thank the Type 1 Diabetes Genetics Consortium for providing the TIDGC
dataset, David Morris for providing a dataset of African-American individuals, and Ingrid
Kockum for providing a dataset of Swedish individuals.

This work was supported by the Australian National Health and Medical Research
Council (NHMRC), Career Development Fellowship ID 1053756 (S.L.); and by the Vic-
torian Life Sciences Computation Initiative (VLSCI) grant number VR0240 on its Peak
Computing Facility at the University of Melbourne, an initiative of the Victorian Gov-
ernment, Australia (S.L.). Research at the Murdoch Childrens Research Institute was
supported by the Victorian Government’s Operational Infrastructure Support Program.

‘Web Resources

1000 Genomes Project SNP genotypes, ftp://ftp.1000genomes.ebi.ac.uk/voll/
ftp/technical/working/20110117_bi_omni_intensities/Omni25_genotypes.b36.vcE.
gz

1958 Birth Cohort, http://www.b58cgene.sgul.ac.uk/

Affymetyrix, http://www.affymetrix.com/

Genome Reference Consortium GRCh37, https://www.ncbi.nlm.nih.gov/projects/
genome/assembly/grc/human/

HLA*IMP:03, http://imp.mcri.edu.au/

HLA Nomenclature for reporting of ambiguous allele typings

G Codes, http://hla.alleles.org/alleles/g_groups.html
P Codes, http://hla.alleles.org/alleles/p_groups.html

INlumina, http://www.illumina.com/

liftOver software, https://genome.ucsc.edu/cgi-bin/hgliftOver

Michigan Imputation Server, https://imputationserver.sph.umich.edu

OMIM, http://www.omim.org/

PLINK software, http://pngu.mgh.harvard.edu/purcell/plink/

R software, http://www.r-project.org/

Pan-Asian HLA reference panel, https://www.broadinstitute.org/mpg/snp2hla/
data/SNP2HLA_package_v1.0.3.tar.gz
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Figure 1. Cross-validation imputation accuracy

The percentage of correctly imputed two-field alleles for the different methods at each
HLA locus from the cross-validation analysis with multi-population reference panel,
with associated 95% credible intervals (see Material and Methods) for

(A) African-American / African individuals, (B) Asian individuals, (C) European
individuals, and (D) Latino individuals.
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Figure 2. Imputation accuracy in T1DGC validation set

The percentage of correctly imputed two-field alleles for the different methods at each
HLA locus in the TIDGC validation set, with associated 95% credible intervals (see
Material and Methods). The publicly available pre-trained model was used for HIBAG.
Two sets of results are presented for HLA*IMP:02 and HLA*IMP:03: the
cross-validation analysis with the multi-population reference panel, and trained with all
samples except T1IDGC. Pre-trained MAGprediction was omitted from the figure due
to its very low accuracy.
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Figure 3. Impact of the sample size ratio on the power to detect an
association

(A) Estimates of power for a standard association test (using the formula from Ref.*?)
conducted at a hypothetical allele for various assumed values of the sample size ratio
and allele frequency. Further assumptions include: odds ratio (OR) of 1.5, a p-value
threshold of 5 x 1078, 5000 cases and 5000 controls. (B) Standard power curves for the
same scenario as in (A) but this time varying the OR but keeping the allele frequency
fixed at 5%. The points in each plot show the scenarios where the assumed parameter
values are identical (OR of 1.5 and allele frequency 5%).
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Tables

Table 1. Summary of HLA reference panel

For each HLA locus the table displays: the number of individuals typed at two-fields in each dataset (CEU+58, GSK, YRI, 1000G, T1DGC, KC, PA, SW) and
in total; the number of SNPs in the xMHC for the dataset formed by merging all individuals typed at that HLA locus; and the number of two-field alleles
present in the dataset. MIM number — Mendelian Inheritance in Man number. HLA-DRB/ does not have a MIM number; the HUGO Gene Nomenclature
Committee (HGNC) ID is given instead.

HLA locus A B C DQA! DQ@B!I DRB1 DRBS3S DRB4 DRB5 DPA1 DPBI
MIM number or HGNC ID 142800/ 142830 142840/ 146880| 604305 142857 1612735 HGNC:4952| 604776 142880/ (142858
No. individuals in each dataset

CEU+58 890 1,490 836 61 1,017 1,122 - - - - -
GSK 379 1,365 398 302 498 1,191 158 182 265 - 112
YRI 23 23 23 23 22 18 - - - - -
1000G 927 927 926 - 925 927 - - - - -
T1DGC 5,192 5,192 5,192 5,192 5,192 5,192 - - - 5,192 5,190
KC - - - 332 330 331 332 332 332 - -
PA 443 439 449 450 450 448 - - - 452 441
SW - - - 423 421 423 48 42 9 423 422
Total individuals 7,854 9,436 7,824 6,783 8,855 9,652 538 556 606 6,067 6,165
No. SNPs in merged dataset 1,672 1,672 1,672 1,357 1,162 1,162 2,254 2,253 2,291 2,193 2,097
No. two-field alleles 91 174 54 20 28 94 6 3 4 8 51

‘uoissiwad INoYIM pamo|je asnal ON ‘paAlasal Siybu |y “Japunyloyine ayl si (mainal Jaad Aq paniiad Jou sem
yorym) Jundaid siyy Joy sapjoy yBLAdoD syl '9T0Z ‘6 J9qwada paisod UOISIaA SIY) {600T60/TOTT 0T/BI0"10p/:sdny :1op juudaid Axyolq
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Table 2. Cross-validation imputation accuracy

The percentage of correctly imputed two-field alleles is shown for each method at each HLA locus in
each of four major populations from the cross-validation analysis with the multi-population reference
panel. The number of individuals used for validation in each population at each HLA locus is also
shown. *Method does not support this locus.

s . No. validation l\fetho.d
Population HLA locus 4 Jividuals HIBAG HLA*IMP:02 Hlfﬁhils\gdijQ HLA*IMP:03 SNP2HLA
African-American / A 203 94.1 92.9 92.4 95.1 88.1
African B 235 88.3 85.1 84.3 90.0 77.4
c 203 93.3 92.4 92.6 94.6 79.8
DQA1 355 97.5 94.8 94.4 96.3 77.6
DQB1 531 85.2 82.8 82.3 86.0 63.0
DRBI1 550 91.8 89.8 88.5 94.9 90.0
DRBS3 338 * 95.6 96.3 99.0 *
DRBY 337 * 98.2 98.4 99.4 *
DRB5 342 99.1 99.4 99.4 99.6 *
Asian A 719 86.2 915 90.7 92.6 880
B 852 89.9 86.2 85.7 91.6 85.8
c 759 97.8 96.6 96.0 97.7 86.7
DPA1 452 99.3 99.1 98.6 99.3 91.5
DPB1 452 88.4 89.0 87.5 89.3 83.6
DQA1 487 96.6 96.1 95.3 97.4 84.8
DQB1 767 86.7 86.0 85.2 88.2 72.4
DRB1 845 87.8 86.8 87.8 91.2 88.4
DRBS 12 * 87.5 100.0 100.0 *
DRBY 11 * 100.0 100.0 100.0 *
DRB5 14 100.0 100.0 96.4 100.0 *
Europeans A 6,685 97.7 97.6 97.3 97.7 96.4
B 7,999 95.8 94.2 94.2 95.7 93.7
c 6,642 98.3 98.1 97.7 98.2 94.0
DPA1 5,615 99.7 99.7 99.6 99.9 97.5
DPB1 5,686 95.0 95.1 95.1 95.6 92.5
DQA1 5,899 99.3 98.8 98.7 99.3 91.4
DQB1 7.325 98.0 97.1 96.6 98.0 88.2
DRB1 7,918 94.1 93.6 93.1 95.0 94.2
DRBS 165 * 96.7 97.0 98.5 *
DRBY 197 * 97.5 97.0 99.2 *
DRB5 217 99.5 99.8 99.5 99.5 *
Latino A 217 915 92.4 910 924 894
B 350 78.3 73.6 73.9 78.9 70.7
c 220 96.1 94.5 94.5 96.4 90.2
DPB1 26 84.6 86.5 86.5 86.5 82.7
DQA1 42 100.0 98.8 96.4 98.8 84.5
DQB1 232 91.6 90.5 89.2 94.4 81.0
DRB1 339 83.9 82.2 83.5 88.8 84.4
DRB3 23 * 93.5 97.8 97.8 *
DRB, 11 * 100.0 100.0 100.0 *
DRB5 33 100.0 100.0 98.5 100.0 *
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Table 3. Imputation accuracy in T1DGC validation set

The percentage of correctly imputed two-field alleles is shown for each method at each HLA
locus in the T1IDGC validation set. Publicly available pre-trained models were used for
HIBAG and MAGprediction. Two sets of results are presented for HLA*IMP:02 and
HLA*IMP:03: the cross-validation analysis with the multi-population reference panel, and
trained with all samples except TIDGC. The number of individuals available for validation at
each HLA locus is also shown. *Method does not support this locus.

HLA locus No. validation = HIBAG  MAGprediction HLA*IMP:02 HLA*IMP:03
individuals  Pre-trained Pre-trained CV Excl. TIDGC CV Excl. TIDGC
A 5,192 95.2 41.2 97.4 95.5 97.5 96.6
B 5,192 91.5 46.6 93.3 91.5 95.1 93.8
(& 5,192 97.2 56.2 98.3 97.1 98.4 97.7
DPA1 5,192 * * 99.7 98.3 99.8 98.8
DPB1 5,190 89.9 86.9 95.0 88.4 95.6 92.3
DQA1 5,192 98.4 * 98.8 98.2 99.4 98.8
DQB1 5,192 97.1 67.2 97.5 95.3 98.4 95.2
DRB1 5,192 88.8 37.6 93.6 90.1 95.3 93.7
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