Monkey in the middle: monkeys serve as amplification hosts but not reservoir hosts of sylvatic chikungunya virus

Benjamin M. Althouse1,2,3,4,†, Mathilde Guerbois5,‡, Derek A. T. Cummings6, Ousmane M. Diop7, Ousmane Faye7, Abdourahmane Faye7, Diawo Diallo7, Bakary Djilocalisse Sadio7, Abdourahmane Sow7, Oumar Faye7, Amadou A. Sall7, Mawlouth Diallo7, Brenda Benefit4, Evan Simons8, Douglas M. Watts9, Scott C. Weaver10, and Kathryn A. Hanley4

1Epidemiology, Institute for Disease Modeling, Bellevue, WA
2Information School, University of Washington, Seattle, WA
3Santa Fe Institute, Santa Fe, NM
4Department of Biology, New Mexico State University, Las Cruces, NM
5Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
6Emerging Pathogens Institute, University of Florida, Gainesville, FL
7Institut Pasteur de Dakar, Dakar, Senegal
8Department of Anthropology, New Mexico State University, Las Cruces, NM
9Office of Research and Sponsored Projects, University of Texas at El Paso, El Paso, TX and Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, TX
10Departments of Pathology and Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA

October 3, 2016

Abstract

Background Novel pathogens can emerge into humans via one-step transmission from a reservoir host, an animal species in which the pathogen is maintained, or a two-step process in which the pathogen is transmitted from the reservoir host into a different amplification host species and thence to humans. Here we use serosurveillance and mathematical modeling to discover whether monkeys serve as reservoir or amplification hosts for mosquito-borne chikungunya virus (CHIKV). CHIKV invaded the Americas in 2013, and our study provides key data for predicting whether and where CHIKV will establish enzootic transmission among animal hosts in the New World.

*To whom correspondence should be addressed. Email: balthouse@idmod.org
†These authors contributed equally to this work.
Results Over three years we captured 219 African green monkeys, 78 patas monkeys, and 440 Guinea baboons, the three monkey species near Kédougou, Senegal. Monkey age was determined by anthropometry and dentition, and exposure of each animal to CHIKV was determined via detection of neutralizing antibodies. Age and exposure were used to estimate age-specific CHIKV seroprevalence, force of infection (FoI), and basic reproductive number (R_0) in each species. CHIKV FoI were extremely high, ranging from 0.13 (95% CI, 0.07–0.22) in patas in 2012 to 1.12 (95% CI, 0.81–2.28) in African greens in 2011. R_0 ranged from 1.5 (95% CI, 1.3–1.9) in patas in 2012, to 6.6 (95% CI, 5.1–10.4) in baboons in 2011.

Conclusions These findings demonstrate that monkeys in this region are constantly exposed to CHIKV transmission, even when population seropositivity, and therefore immunity, was too high for monkeys themselves to support continuous CHIKV transmission. We therefore conclude that monkeys in this system serve as amplification rather than reservoir hosts of CHIKV.

Considering the potential for CHIKV to spill back in to monkeys in the Americas and elsewhere, improved understanding of its sylvatic cycle is essential to understanding and perhaps controlling the spread of this virus.

keywords: chikungunya virus — sylvatic arbovirus — non-human primate — age-stratified serosurvey
Introduction

Arthropod-borne viruses (arboviruses) can emerge from enzootic cycles, i.e. transmission cycles maintained in non-human reservoir hosts and arthropod vectors, into humans via vector transmission directly from the reservoir host to a human host [1]. Yellow fever virus, for example, can be transmitted directly from its non-human primate (NHP) reservoir hosts to humans in transitional habitats where the two interact. Alternatively, an arbovirus may first be transmitted from the reservoir host into an amplification host species that supports robust replication of the virus, and from the amplification host to humans. For example, Japanese encephalitis virus is maintained in avian reservoir hosts but usually must be amplified in pigs before human infections occur [2]. Identifying the suite of reservoir and amplification hosts that support transmission and enable emergence of specific arboviruses is key to predicting and, in some instances, preventing human infections.

Mosquito-borne chikungunya virus (CHIKV) circulates in two genetically-distinct, enzootic transmission cycles in the forests of West Africa and East/Central/South Africa (ECSA) [3]. Evidence to date has suggested that non-human primates (NHPs) serve as the reservoir hosts in these cycles [4], though Chevillon and colleagues [5] have questioned this claim. Sylvatic CHIKV periodically spills over from both the enzootic cycles into humans to cause individual cases and small outbreaks. Moreover explosive outbreaks and long-range geographic spread have occurred due to transmission by the anthropophilic mosquitoes Aedes aegypti and Ae. albopictus. CHIKV causes significant morbidity in humans, including debilitating arthralgia and myalgia that can become chronic [6]. CHIKV outbreaks in the Indian Ocean [7] and in India [6] have involved millions of cases; outbreaks on islands in the Indian Ocean, involving hundreds-of-thousands of cases and some fatalities, have included many tourists returning to Europe and the Americas [7, 6, 8, 9]. Recently, CHIKV established transmission in the Americas, resulting in thousands of chikungunya cases in the islands of the Caribbean as well as mainland South America [8]. There have been over 150 deaths from CHIKV in the Caribbean since the beginning of the outbreak in 2013 [10]. In July 2014, local transmission of CHIKV was detected in Florida, U.S.A. [11].

It is not clear whether the sporadic nature of CHIKV outbreaks in Asia over the last five decades [12, 13, 14] are due to sustained transmission in multiple enzootic foci in Asia or repetitive
geographic expansion and retreat from reservoir transmission cycles within Africa. Moreover, the potential for CHIKV to establish novel enzootic cycles in the Americas is not clear, because the hosts responsible for persistence of CHIKV in its endemic enzootic cycles in Africa have not been fully characterized [15, 5]. Certainly NHPs are abundant in the islands and mainland regions of tropical America in which CHIKV is currently circulating, including large populations of Old World NHPs [1]. A recent report of serological evidence of CHIKV infection in captive pig-tailed macaques (Macaca nemestrina) [16] as well as crab-eating macaques (Macaca fascicularis) and brown lemurs (Eulemur fulvus) on islands in the Indian Ocean [17] suggests that the virus has the potential to establish novel sylvatic transmission cycles, as yellow fever virus did when it was transported via the slave trade from Africa into the Americas [1].

In Senegal, primatophilic, sylvatic mosquitoes have been collected in the Department of Kédougou (Figure 1) via human landing capture and screened for arbovirus infection annually since the early 1970s by personnel from the Institut Pasteur. CHIKV has been isolated from mosquitoes, primarily in the genus Aedes (e.g. Ae. furcifer, Ae. taylori, Ae. luteocephalus, and Ae. africanus) [18], at 4.1 year intervals over this timespan [13]. Periods during which the virus can be detected in mosquitoes are termed amplifications. During amplifications, CHIKV has been isolated from all three monkey species resident in Kédougou; African green monkeys (Chlorocebus sabaeus), patas monkeys (Erythrocebus patas), and Guinea baboons (Papio papio), as well as from a bushbaby (Galago senegalensis), Scotophilus bats and one palm squirrel (Xerus erythropus) [18, 5]. Additionally CHIKV has been isolated from guenons (Cercopithecus aethiops) in Senegal [18], although guenons are not resident in Kédougou [19]. Sera from mandrills (Mandrillus sphinx) in Gabon [20], red-tail monkeys (Cercopithecus ascanius schmidti) in Uganda [21], and African green monkeys (Cercopithecus (Chlorocebus) aethiops sensu lato) and Chacma baboon (Papio ursinus) in South Africa and Zimbabwe [22], have also tested positive for CHIKV antibodies. Together, these findings serve as the basis for the common assertion in the literature that NHPs serve as the reservoir hosts of CHIKV, i.e. hosts that are required for pathogen persistence, and the 4 year periodicity in observed CHIKV amplifications is characterized by depletion of susceptible NHP hosts during epizootics, local extinction of the virus, recruitment of susceptible hosts via births, and reintroduction of the virus from distant sites [3].

In the current study, we sought to test the dynamics of CHIKV transmission in monkeys in
Senegal and thereby discern their role in the West African sylvatic CHIKV cycle. Specifically, we hypothesized that monkeys serve as reservoir hosts for CHIKV, and that the four year periodicity observed in CHIKV amplifications is driven by depletion of susceptible NHP hosts during epizootics (epidemics in the reservoir hosts), local extinction of the virus, recruitment of susceptible hosts via births, and reintroduction of the virus from distant sites [3]. To test this hypothesis, we conducted a three-year study of the seroprevalence of CHIKV among individuals of known age from the three monkey species resident in the Department of Kédougou. These data were used to estimate key epidemiological parameters describing the transmission dynamics of CHIKV: age-specific seroprevalence, forces of infection (FoI), and basic reproductive numbers in each of these three species. Contra our hypothesis, we found that rates of CHIKV seropositivity in juvenile monkeys and CHIKV FoI were high in all three monkey species in the periods between amplifications in primatophilic mosquitoes. These findings suggest that vertebrate species other than monkeys serve as reservoir hosts in this area, while monkeys instead act as amplification hosts. To our knowledge this is the first quantitative characterization of CHIKV transmission dynamics in its sylvatic cycle, the only age-stratified serological survey of CHIKV in NHPs in Africa, and the first time that this approach has been used to distinguish whether a particular species or group of species serves as reservoir host, amplification host or both for a zoonotic pathogen. Moreover, our findings will inform future work integrating data and models to assess risk to humans living near African sylvatic hotspots [23] as well as surveillance of potential enzootic CHIKV hosts outside of Africa.

Methods

Ethics Statement

All animal research was approved by the Institutional Animal Care and Use Committee (IACUC) of University of Texas Medical Branch, Galveston, protocol number: 0809063 (principal investigator: SCW), and the entire protocol was approved on November 27, 2008 by the Consultative Committee for Ethics and Animal Experimentation of the Interstate School for Veterinary Sciences and Medicine, Dakar, Senegal (principal investigator: AAS). No other specific permits were necessary. This approval is necessary and sufficient to conduct wildlife research in Senegal. Animals were trapped in large, open air containers (see Figure 1, panel c) with access to water and food, sedated
and retained only long enough to take anthropomorphic measurements and draw a blood sample. Animals were released together as an intact troop upon recovery from ketamine anesthesia.

Study site

NHPs were trapped at sites around Kédougou, Senegal (12°33 N, 12°11 W) close to the borders of Mali and Guinea (Figure 1). The area is comprised of a mosaic of open savanna, woody savanna, outcrops of laterite (bowé), and relictual gallery forest, the latter concentrated along valleys and rivers. The Kédougou region is characterized by a tropical savanna climate, and receives an average of 1,300 mm of total annual rainfall, with one rainy season from approximately June through November. Mean temperatures fluctuate around 25–33°C throughout the year. Three monkey species reside in Kédougou: African green monkeys (AGM; *Chlorocebus sabaeus*), patas monkeys (*Erythrocebus patas*), and Guinea baboons (*Papio papio*). A relictual population of chimpanzees (*Pan troglodytes*) is present in the region [24], albeit at numbers too small to significantly affect CHIKV transmission. Senegal bushbabies (*Galago senegalensis*) are the only other NHP resident in Kédougou; populations sizes for this species in Senegal are not known [25]; because bushbabies are nocturnal and primarily consume arthropods it was not possible to collect them using the methods employed in this study. Humans in Kédougou have typically lived at low density (4/km²) in small dispersed villages. In the last ten years, however, the region has experienced a “gold rush”, and the expanding scope of mining operations is creating dramatic changes in population density, occupation and mobility [26].

The Kédougou area features a rich diversity of mosquito species including *Aedes aegypti* formosus, *Ae. africanus*, *Ae. centropunctatus*, *Ae. dalzieli*, *Ae. furcifer*, *Ae. hirsutus*, *Ae. luteocephalus*, *Ae. metallicus*, *Ae. neoafricanus*, *Ae. taylori*, *Ae. vittatus*, *Anopheles coustani*, *An. domicola*, *An. funestus*, *Culex poicilipes*, and *Mansonia uniformis*. *Ae. luteocephalus*, *Ae. taylori* and *Ae. africanus* show high rates of CHIKV infection but their distributions tend to be confined to forest canopies, thus they have been implicated in the maintenance of transmission of CHIKV among NHPs. *Ae. furcifer* has comparable CHIKV infection rates compared to the former three species, but a distribution that encompasses both the forest canopy and villages equally. We have therefore proposed that this species is the principal vector for spillover of sylvatic arboviruses into human communities around Kédougou [27].
Figure 1: NHP Collection Sites and Sample NHP Panel a shows a map of Senegal with the Kédougou Department boxed. Panel b shows a map of the Kédougou region with the study region boxed and presented in detail in Figure 2. Panel c shows a typical trap, and panels d and e shows a male C. sabaeus estimated to be approximately 5 years (between 4-6 years) of age.

Monkey and Mosquito Collections

E. patas, C. sabaeus, and P. papio were trapped during the dry season (generally December to May) in 2010, 2011, 2012, from 15 sites in the Department of Kédougou (Figure 1). Monkeys were captured in ground traps (see Figure 1 and Supplemental Information) during the dry season, when other foods are scarce. Monkeys were sedated with 10 mg/kg of ketamine administered intramuscularly. Anthropological measurements were taken (weight, arm length, leg length, tail length, and body length), gender was determined, and nipple and scrotum conditions were noted. Dental casts and dental photographs were taken to assess which teeth were erupted (based on gingival emergence and complete eruption).

Monkey captures were conducted during the dry season, while mosquito collection was conducted during the rainy season (June–January) [27]. An amplification of CHIKV occurred in June
2009–January 2010, but CHIKV was not then detected in mosquitoes in 2010, 2011, or 2012. Yellow fever virus (YFV; [28]) and Zika virus (ZIKAV; unpublished data) were amplified in 2010 and 2011, respectively. Figure 2 shows the relative location of the NHP sites and mosquito sites where CHIKV, YFV, and ZIKAV were isolated.

Determination of Monkey Age

Chlorocebus sabaeus, Erythrocebus patas, and *Papio papio* were sorted into age classes based on the tooth eruption and degree of molar wear. The sequence of tooth eruption and molar occlusal wear was first determined separately for males and females of each species. Tooth presence, absence and gingival eruption information taken from casts and photographs was placed in order of tooth appearance to reveal the dental eruption sequence (see Supplemental Information). Published ages of dental eruption based on individuals of known age from captive and/or wild populations of the same species (*Chlorocebus aethiops* and *Erythrocebus patas*), or closely related species (*Papio*
cynocephalus and Papio anubis) were used to estimate the chronological age of infant through young adult individuals in the Senegal populations [29, 30, 31, 32, 33]. See Supplemental Information for more information including age classes for NHPs used in this study.

Serology

Monkeys were bled from the inguinal vein while sedated and serum was frozen for later testing. Sera were tested for CHIKV, dengue virus, and YFV antibody by plaque reduction neutralization tests (PRNT) to determine the dilutions of sera that neutralized 50% and/or 80% of available virus [34]. PRNT₈₀ data are presented here. O’nyong nyong virus, an alphavirus with a close antigenic relationship to CHIKV, is present in Senegal. While antibodies raised against CHIKV will bind O’nyong nyong virus; antibodies raised against O’nyong nyong virus will not generally bind CHIKV [35]. This one-way antigenic cross-reactivity ensures the results presented here are likely true CHIKV antibody responses and not responses to O’nyong nyong [36].

Associations with CHIKV Seropositivity

To identify associations between NHP characteristics and CHIKV seropositivity, mixed-effects logistic and linear regressions were estimated. PRNT₈₀ IgG seropositivity and inverse PRNT₈₀ titers were the two outcomes of interest. Covariates of interest were NHP age, month of collection, and species, with NHP troop as a random effect to account for possible correlation of seropositivity at the troop level. As true NHP troops were not tracked, and indeed may not exist as consistent entities in some species, we considered those NHPs collected on the same day in the same site to belong to the same troop.

Force of CHIKV Infection

 Increases in seropositivity with age reflect the rate at which hosts acquire infection as a function of time as well as their risk of acquiring infection at different ages. The force of infection gives an indication of the intensity of transmission in a given area; high forces of infection indicating high prevalence of the pathogen in a population. Catalytic models of infection were fit to age-stratified data to determine annual forces of infection (denoted throughout as \(\lambda(t) \)). Models fit here are based on Grenfell et al. [37], and have been employed for dengue virus in Brazil [38] and Thailand [39].
Briefly, the proportion of the population susceptible to CHIKV infection of age a at time t is given by

$$x(a, t) = \exp \left(- \int_0^a \lambda(t - \tau) d\tau \right).$$

(1)

The proportion of individuals of age a infected with CHIKV at time t is

$$z(a, t) = x(a, t) \left[\exp \left(- \int_0^a \lambda(t - \tau) d\tau \right) - 1 \right].$$

(2)

We can discretize the model by age and use maximum likelihood methods for estimating $\lambda(t)$. The binomial log-likelihood (seropositive for CHIKV or not) of $\lambda_k(t)$ for age class $k \in [1, m]$ is

$$\ell(\lambda_k(t)) = \sum_{k=1}^{m} \left[n_{xk} \log[n(x_k, t_0)] + n_{yk} \log[z(a_k, t_0) + (1 - z(a_k, t_0))] \right].$$

(3)

where n_{xk} and n_{yk} are the numbers susceptible and seropositive for CHIKV infection in age class k, respectively. We can compare the maximum likelihood estimates, ℓ_{max}, to the saturated likelihood to estimate the goodness-of-fit of each model. The saturated likelihood, ℓ_{sat}, is given by

$$\ell_{\text{sat}} = \sum_{k=1}^{m} \left[n_{xk} \log \left(\frac{n_{xk}}{N_k} \right) + n_{yk} \log \left(\frac{n_{yk}}{N_k} \right) \right].$$

(4)

The statistic $X^2 = 2 \cdot (\ell_{\text{max}} - \ell_{\text{sat}})$ is χ^2 distributed with $m - P$ degrees of freedom, where m is the number of age classes and P is the number of parameters being estimated. As per Ferguson et al. [40], smaller X^2 values are better and models with p-values greater than 0.05 are considered to fit the data well, as this indicates models that are statistically indistinguishable from saturated models. We calculated bootstrap confidence intervals to estimate uncertainty in estimates of $\lambda(t)$ by sampling NHPs with replacement and recalculating $\lambda(t)$. We estimate both constant and age-varying forces of infection.
Calculating of the Basic Reproductive Number of CHIKV

The basic reproductive number, R_0, gives important information about the infectiousness of a pathogen in a population, and the feasibility of its eradication or control in that population. Higher values of R_0 would indicate higher numbers of infections and that a larger fraction of the population would need to be removed from the transmission pool (e.g. through vaccination or treatment) to stop transmission. R_0 can be calculated from $\lambda(t)$ if assumptions are made about the age structure of the population experiencing infection by using hazards to estimate the fraction of the population that remains susceptible and taking its reciprocal [40]. Let $f(a)$ be the fraction of the population aged a, and $w(a,t)$ be the fraction of the population aged a unexposed to CHIKV at time t, then

$$R_0 = \frac{1}{1 - \int_0^\infty f(a)w(a,t)da}. \quad (5)$$

We estimate $w(a,t)$ from $\lambda(t)$ as

$$w(a,t) = 1 - \exp\left(-\int_0^a \lambda(t - \tau)d\tau\right). \quad (6)$$

As the age structure of the NHP populations under study are not known, we assume three distributions of ages: Uniform(0, maximum observed age); Exponential(rate = 1/captive mean lifespan); and Exponential(rate = 1/mean observed age). We compared these to the observed age distributions of captured NHP. We use reported lifespans of NHP species in captive settings as an upper-bound on the lifespan.

Sensitivity Analyses

Substantial sensitivity analyses were conducted to assess the effects of biased sampling by age; these are presented in the Supplemental Information.
Results

Non-human Primates Collected

Across all years of the study, 737 NHPs were collected in the 15 sites (Table 1). This included 219 *C. sabaeus*, 78 *E. patas*, and 440 *P. papio*. Sites differed substantially in numbers of NHPs collected. *P. papio* were the most frequently collected NHP, but were only caught at 6 of the 15 sites (see Supplemental Information, Table S1). *E. patas* were collected at 7 of 15 sites, and *C. sabaeus* at 9 of the 15 sites. The mean ages of collected NHPs were relatively low, ranging from 3.5 years for *E. patas* to 6.7 years for *P. papio* (Figure 3). These ages are consistent with previous estimates of the lifespan of wild *P. papio* and *E. patas* [41, 42, 43]. Ages were approximately exponentially distributed. As might be expected in collections biased toward juvenile animals [44], more male *C. sabaeus* (N=147) and *P. papio* (N=260) were collected than females (N=70 *C. sabaeus* and N=180 *P. papio* females), though more female *E. patas* (N=64) were collected than males (N=14). The sex of two individuals was not recorded. Captured females of all species were older than captured males (*C. sabaeus* 5.4 vs. 3.4 years [1-sided t-test, p = 0.0001], *P. papio* 8.7 vs. 5.4 years [p < 0.0001], and *E. patas* 3.9 vs. 1.6 years [p = 0.003]).

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorocebus sabaeus</td>
<td>52</td>
<td>78</td>
<td>89</td>
<td>219</td>
</tr>
<tr>
<td>Erythrocebus patas</td>
<td>34</td>
<td>4</td>
<td>40</td>
<td>78</td>
</tr>
<tr>
<td>Papio papio</td>
<td>103</td>
<td>200</td>
<td>137</td>
<td>440</td>
</tr>
<tr>
<td>Total</td>
<td>189</td>
<td>282</td>
<td>266</td>
<td>737</td>
</tr>
</tbody>
</table>

Table 1: NHPs Collected by Year Table shows the numbers of NHPs collected per year across all sites.

Seropositivity

Rates of CHIKV seropositivity in all three species were high. Among 667 NHPs tested (198 *C. sabaeus*, 399 *P. papio*, and 70 *E. patas*) 479 (72%) were seropositive for CHIKV by PRNT. The remaining animals were not tested either because (i) adequate volumes of blood could not be drawn, (ii) identification data were not recorded, (iii) dental casts or photographs were inadequate, or (iv) samples were lost during shipment. As expected during the dry season, no animals were positive for IgM antibody. Moreover, agreement between PRNT\textsubscript{50} and PRNT\textsubscript{80} was excellent, only 14 of
Figure 3: Age Distributions of Collected NHPs Panels show the observed age distributions of collected NHPs with exponential distributions (thick line) with rates equal to the mean age of collected individuals, for *Chlorocebus sabaeus*, *Papio papio*, and *Erythrocebus patas*, respectively.

493 were positive by PRNT_{50} and not PRNT_{80} (2% of all NHPs tested, Cohen’s κ = 0.95 [95% CI 0.87–1]). Mixed effects regression models were preferred to fixed effects models by AIC (432.7 versus 446.0). Baseline seropositivity was high with the intercept and random effect indicating 95% of *C. sabaeus* primate infants (< 1 year old) collected in January to have PRNT_{80} positivity rates between 0.060 and 0.52 (Table 2). Age of NHP was strongly positively associated with odds
<table>
<thead>
<tr>
<th>Covariate</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept (β_0)</td>
<td>0.26 (0.05, 1.24)</td>
</tr>
<tr>
<td>Age</td>
<td>2.14 (1.84, 2.50)</td>
</tr>
<tr>
<td>Erythrocebus patas</td>
<td>0.18 (0.05, 0.66)</td>
</tr>
<tr>
<td>Papio papio</td>
<td>1.18 (0.45, 3.13)</td>
</tr>
<tr>
<td>Feb. Collection</td>
<td>1.51 (0.19, 11.78)</td>
</tr>
<tr>
<td>Mar. Collection</td>
<td>0.84 (0.17, 4.23)</td>
</tr>
<tr>
<td>Apr. Collection</td>
<td>1.34 (0.23, 7.81)</td>
</tr>
<tr>
<td>May Collection</td>
<td>1.86 (0.25, 13.87)</td>
</tr>
<tr>
<td>Dec. Collection</td>
<td>2.32 (0.28, 19.35)</td>
</tr>
<tr>
<td>RE Troop (b_0)</td>
<td>0.72 (-0.69, 2.12)</td>
</tr>
<tr>
<td>ICC</td>
<td>0.135</td>
</tr>
</tbody>
</table>

Table 2: Mixed Effects Logistic Regression Table reports the estimates from a mixed effects logistic regression with CHIKV IgG seropositivity as the outcome and NHP age, species, month of collection as fixed effects and troop (same collection site and date) as a random effect. Intercept corresponds to 0.26 probability of IgG positivity in the first year of life in Chlorocebus sabaeus primates collected in January, with the random effect indicating 95% of Chlorocebus sabaeus primate infants (<1 year old) collected in January have PRNT$_{80}$ positivity rates between 0.060 and 0.52 ($\exp(\beta_0\pm 1.96\cdot b_0)/[1 + \exp(\beta_0\pm 1.96\cdot b_0)]$). ICC is the intraclass correlation for the random effect, and indicates about 13.5% of the total observed variance is due to variance within NHP troops.

Mixed effects linear regressions for the inverse PRNT$_{80}$ titers were preferred to fixed effects models by AIC (1670.3 versus 1802.2) and are presented in the Supplemental Information. Age was significantly negatively associated with inverse titer, with each year of age corresponding to about a 4% decrease in titer ($\beta = 0.96$ [95% CI, 0.94–0.98]). This decrease is driven largely by P. papio in 2010 and 2011 (see Supplementary Figure 3). Large differences in antibody titers were seen across study years, with 2011 having 75% lower titers ($\beta = 0.25$ [95% CI, 0.13–0.49]). This is likely due to there being no inverse titers of 1280 observed in 2011 (Figure 4).

Force of Infection

In general, forces of infection (FoI) were high, ranging from 0.13 (95% CI, 0.07–0.22) in E. patas in 2012, to well over 1 in C. sabaeus in 2011 ($\lambda(t) = 1.12$, [95% CI, 0.81–2.28]). Only two of the constant FoI models provided a better fit than the saturated model ($p > 0.05$): C. sabaeus in 2010...
Figure 4: Inverse PRNT\textsubscript{80} CHIKV titers by Year Figure shows number of animals (counts) per antibody titer by year for all three species of NHP.

and 2011. \textit{P. papio} in 2010 was marginally better than the saturated model (p=0.05). As might be expected, the age-varying FoI was more flexible and provided a better fit (see Supplemental Information). FoI were high for younger NHPs, but there was a spike in FoI for NHPs aged about 8 years. Sensitivity analyses revealed the potential for over-estimation of $\lambda(t)$ when the sampling is very biased by age (see Supplemental Information). Note the presence of smoldering CHIKV.
transmission: there is high CHIKV seropositivity observed in young NHPs of all species (<2 years old) in 2012 – four years after the most recent CHIKV amplification (Figure 5 and Supplementary Figure 4).

Figure 5: **Forces of Infection by NHP and Year** Panels show the forces infection ($\lambda(t)$) and p-values for the fit across years for *C. sabaeus*, *E. patas*, and *P. papio*, respectively. Too few *E. patas* were collected in 2011 to obtain estimates. We included all NHPs less than one year old in the 0 age category (we present seropositivity results for NHPs under 3 years of age in the Supplementary Information). Points are the proportion of seropositive NHPs per age year with confidence intervals. Thick black line is the fit of the force of infection, grey bands are bootstrap confidence intervals for the fit.
Table 3: Estimates of R_0 Table reports the estimates of the basic reproduction number for the three species of NHP each year of the study period. Estimates are dependent on the assumed underlying population structure. “Flat” structure assumes a uniform population structure, “Literature Ages” and “Mean Ages” assume exponentially-distributed population structures with rates equal to the mean lifespan reported in the literature for captive NHPs, and the mean ages of the collected NHPs, respectively.

Basic Reproductive Number

Estimates of R_0 varied by NHP, year, and assumed population structure. Assuming an exponential population structure with rate equal to the observed mean ages, estimates of R_0 varied from 1.5 (95% CI, 1.3, 1.9) in *E. patas* in 2012, to 6.6 (95% CI, 5.1, 10.4) in *P. papio* in 2011. Generally, R_0 was highest in 2010 and in *P. papio*. *P. papio* consistently had the highest estimates of R_0 with estimates up to 4 times as high as either species in each year. See Table 3 and the Supplemental Information.

Discussion

In the Kédougou region, sylvatic CHIKV has been isolated from pools of primatophilic mosquitoes collected via human landing capture at roughly four-year intervals since the early 1970s [18, 13]. During these amplifications, outbreaks of CHIKV among humans occurred in Senegal in 1966, 1982, 1996, 2004, and in 2010 ([27] and unpublished data), and the virus was isolated from humans in 1975 and 1983. We have hypothesized that monkeys are the reservoir hosts of CHIKV, and that during CHIKV amplifications, most susceptible monkeys are infected and rendered immune, so that the interval between CHIKV amplifications reflects the time needed for a sufficient number of susceptible monkeys to be born (susceptible recruitment) [13]. However, to date no studies have
systematically examined the transmission dynamics of sylvatic CHIKV in NHP hosts.

As expected based on its 4 year amplification cycle, CHIKV was isolated from 42 of 4,211 mosquito pools collected across the Kédougou study region during the rainy season (June–January) of 2009. Infection rates among mosquito species differed temporally, with *Ae. furcifer*, *Ae. luteocephalus*, *Ae. taylori*, and *Ae. dalzieli* having significantly higher rates in December [27]. Despite similar mosquito collection efforts, and consistent with a 4.1 year periodicity in the CHIKV amplification cycle, the virus was not isolated from mosquitoes in the wet seasons of 2010, 2011, and 2012. To assess whether susceptible NHP hosts were indeed depleted during this amplification, leading to local CHIKV extinction and consequent cessation of NHP infection, we initiated a three-year age-stratified, serological survey of NHPs in Kédougou in 2010, immediately following the 2009 amplification. Over 700 NHPs were captured in the 2010, 2011, and 2012 dry seasons and we found high IgG seropositivity rates (72% by PRNT_{80}). Catalytic models found correspondingly high forces of infection, in some cases approaching 1, making infection in the first year of life a near certainty. Even in 2012, three years after the last detected amplification of CHIKV in mosquitoes, we detected relatively high rates of infection in NHP infants (< 1 year old), with seropositivity rates approaching 50% in those under 3 months old (see Supplemental Information). One interpretation of this finding is that infants are seropositive due to transfer of maternal antibody. However, while there is evidence of maternal transfer of CHIKV antibody in humans, the rates are not 100% and antibody levels decay rapidly [45, 46]. Additionally maternal transfer would be unlikely to sustain infant seroprevalence over several years. Thus we conclude that the majority of seropositive infants in this study were infected with CHIKV in their first year of life, despite the failure to detect infected primatophilic mosquitoes during these years. This finding contradicts the hypothesis that monkeys serve exclusively as necessary and sufficient reservoir hosts with primarily primatophilic mosquitoes as vectors. It is likely that these monkey species act as CHIKV amplification hosts.

Our data suggest that an alternate cycle of CHIKV involving reservoir hosts other than monkeys and non-primatophilic vectors exists in Kédougou and is supporting CHIKV transmission. Although previous studies have suggested the existence of such cryptic reservoirs [5], our results provide the strongest evidence to date that the dynamics of CHIKV in monkeys preclude them from serving as dominant long-term reservoirs of the virus. We do note that we have only investigated three species of NHP in this study, however, they are the most common NHPs in Senegal and the
only three monkey species resident in the region. CHIKV has been isolated from several small mammals in Senegal, including *Scotophilus* bats, a palm squirrel (*Xerus erythropus*), and a bushbaby (*Galago senegalensis*) [18, 5]; moreover, bushbabies are important reservoir hosts of yellow fever virus in East Africa [1]. CHIKV may be maintained in cycles involving small mammals and non-primatophilic mosquitoes, which would not necessarily be detected by human landing capture methods. Alternatively, or in addition, it is possible that birds serve as a reservoir host for the virus.

The source of bloodmeals from purportedly primatophilic mosquitoes that are known CHIKV vector species in Kédougou has been identified via PCR amplification of vertebrate cytochrome *b* [47]. This study found 60% (39 individual bloodmeals) of vector bloodmeals were taken from birds, with meals from Western Plantain-eater *Crinifer piscator* being the most common (26 bloodmeals, or 40% of the total). Primates accounted for 35% (23 bloodmeals) of the bloodmeals, and 5% (3 bloodmeals) of fed mosquitoes contained both human and Western Plantain-eater blood. Although previous studies discounted a possible role for birds as amplification hosts in India, where only the urban human-mosquito cycle is known to occur [48], further effort should be made to investigate the possible role of birds in the African enzootic cycle of CHIKV.

Making assumptions about the population structure of Senegalese NHPs, we determined the basic reproductive number of CHIKV in these populations to range from 1.6 to 6.6. Interestingly, we found large differences among species of NHP, with *P. papio* having estimates of R_0 up to three times that of the other NHPs. The forces of infection and reproductive numbers seen here indicate that all three of these species could initiate an explosive amplification of CHIKV. In geographic regions where sylvatic CHIKV transmission occurs, spillover into humans occurs frequently during CHIKV amplifications. Full emergence presumably is initiated when humans infected via spillover come into contact with the urban vectors *Ae. aegypti* and *Ae. albopictus* [49]. Thus, amplification hosts of CHIKV both directly and indirectly generate risk for human disease. In the last 60 years, CHIKV has emerged into sustained human transmission only from the reservoirs in the ECSA sylvatic cycle [50], but the West African cycle has the potential to launch new CHIKV strains into urban transmission. Maps of areas with high risk of spillover infection could be created if estimates of the range of movement and population numbers for the monkey species implicated as amplification hosts were known. Based on our estimates of force of infection, *P. papio* could be playing a larger role in the amplification of CHIKV than previously recognized, especially con-
sidering the substantial spatial heterogeneity mosquito density in the region [27]. In areas with low mosquito density, NHPs with higher forces of infection or values of R_0, may have a larger role in transmission. More importantly, future studies should focus on identifying levels of CHIKV seroconversion and isolating CHIKV in other, non-monkey species. Improved understanding of the enzootic, sylvatic cycle of CHIKV is essential to understanding and perhaps controlling sylvatic arbovirus transmission generally and thereby reducing human disease.

Acknowledgments

We are deeply indebted to Drs. Nicole Mideo (University of Toronto), Bill Messer (Oregon Health and Sciences University), and Rick Ostfeld (Cary Institute of Ecosystem Studies) for their improvements of the manuscript.

References

[14] Benjamin M Althouse, Kathryn A Hanley, Mawlouth Diallo, Amadou A Sall, Yamar Ba, Ousmane Faye, Douglas M Watts, Scott C Weaver, and Derek A T Cummings. Impact of
climate and mosquito vector abundance on sylvatic arbovirus circulation dynamics in senegal.

