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ABSTRACT 

Machine learning is a powerful set of techniques that has enhanced the abilities of neuroscientists 
to interpret information collected through EEG, fMRI, MEG, and PET data. With these new 
techniques come new dangers of overfitting that are not well understood by the neuroscience 
community. In this article, we use Support Vector Machine (SVM) classifiers, and genetic 
algorithms to demonstrate the ease by which overfitting can occur, despite the use of cross 
validation. We demonstrate that comparable and non-generalizable results can be obtained on 
informative and non-informative (i.e. random) data by iteratively modifying hyperparameters in 
seemingly innocuous ways. We recommend a number of techniques for limiting overfitting, such 
as lock boxes, blind analyses, and pre-registrations. These techniques, although uncommon in 
neuroscience applications, are common in many other fields that use machine learning, including 
computer science and physics. Adopting similar safeguards is critical for ensuring the robustness 
of machine-learning techniques. 

INTRODUCTION 

Computers have revolutionized approaches to data analysis in psychology and neuroscience, 
effectively allowing one to interpret not only the neural correlates of cognitive processes, but 
also the actual information that is represented in the brain through use of machine learning. 
However, with these new and powerful tools come new dangers. Machine learning algorithms 
allow a pattern classifier to weave many subtle threads of information together to detect hidden 
patterns in a massive data set, e.g. to determine from MEG data whether someone is currently 
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viewing a building or an animal (Cichy, Pantavis & Oliva 2014). However, these pattern 
classifiers are essentially black boxes to their human operators, as they create complex mappings 
between features and outputs that exceed one’s ability to comprehend. Consequently, when using 
such algorithms, one can unintentionally overfit to the data, even when performing analyses that 
intuitively seem correct. This article seeks to provide a clear understanding of the dangers of 
overfitting by machine classifiers through example, and describes tools and methods to limit and 
detect it. We feel that a thorough understanding of the error introduced through overfitting is 
crucial, since this error is easy to commit yet difficult to detect. Furthermore, while there has 
been a lot of discussion of problems of circularity and inflated effects in neuroscience analyses 
(e.g. Kriegeskorte, Simmons, Bellgowan & Baker 2009; Vul, Harris, Winkielman & Pashler 
2009; Eklund, Nichols, Anderson & Knutsson 2015; Brooks, Zoumpoulaki & Bowman, 2016), 
machine learning algorithms are so effective that they provide dangers above and beyond those 
that have been discussed. Importantly, as will be demonstrated below, the technique of cross-
validation, often employed as a safeguard against overfitting, is not always effective. We suspect 
that the incidence of accidental overfitting errors in the literature could be substantial already, 
and may increase as machine learning methods increase in popularity.  

Overfitting is the optimization of a model on a given data set such that performance improves on 
the data being evaluated but remains constant or degrades on other similar data. This ‘other’ data 
can be referred to as out-of-sample, meaning that it is outside of the data that was used to train 
and evaluate the classifier. In other words, if one were to develop a machine learning approach 
on one data set and then apply the same algorithm to a second set of data drawn from the same 
distribution, performance might be much worse than on the original set of data. This is a severe 
problem, because models that cannot generalize to out-of-sample data have little to say about 
brain function in general: Their results are valid only on the data set used to configure the 
classifier, may be significantly influenced by noise in the data, and are unlikely to be replicated 
on any other set.  

Problems with overfitting are by no means new to science: High-energy physics has had a 
number of high-profile false discoveries, some of which were the result of overfitting an analysis 
to a particular data set. For accounts of some of these in the light of current experimental 
practice, see Harrison (2002) and Dorigo (2015). The similarities between data analysis in high-
energy physics and modern neuroscience are striking: both fields have enormous quantities of 
data that need to be reduced to discover signals of interest. As such, it is useful and common to 
apply cuts to the data, i.e. to restrict analysis to certain regions of interest (ROI), as is common to 
the analysis of fMRI and EEG data. Because the purpose of the cuts is to enhance a signal of 
interest, there is a danger that the choice of a cut made on the basis of the data being analyzed 
(and on the basis of the desired result) may create a signal where none actually exists. 
Furthermore, when making measurements in high-energy physics and neuroscience, complicated 
apparatuses are often used, and analyses typically contain an extremely sophisticated set of 
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software algorithms. Optimization, and debugging of the analysis chain has the potential for 
creating an apparent measurement of a non-existent effect.  

Because of several high-profile false discoveries, high-energy physics has already gone through 
a replicability crisis, and has had to rearrange its methods to deal with the consequences. A 
classic case, which was a big wake-up call, was the so-called split-A2 from Chikovani et al. 
(1967). Had this effect been genuine, it would have engendered a theoretical revolution, but 
when more data became available, the effect disappeared; see Harrison (2002) for a recent view. 
It appeared that inappropriate selection of data was the culprit, which is a form of overfitting. 

To prevent such cases, the high-energy physics community has adopted several conventions and 
methods in the analysis and interpretation of data. Of these changes, the one that is most relevant 
to overfitting is called blind analysis, referring to a technique in which analysis optimization 
occurs without consulting the dependent variable of interest (e.g. Klein & Roodman 2005). Since 
the optimization algorithm is blind to the result of interest, overfitting is at least difficult, if not 
impossible. At the end of this paper we will discuss several preventative solutions, including 
blind analysis. Unlike physics, while related issues have been discussed in the literature 
(Kriegeskorte et al 2009), the neuroscience field has not yet fully responded to the dangers of 
overfitting when complex analyses are used, which increases the potential of false findings and 
presents a major barrier to the replicability of the literature. 

CROSS-VALIDATION DOES NOT AUTOMATICALLY PREVENT 
OVERFITTING 
In the neuroscience literature, a method that is typically employed to prevent overfitting is cross-
validation, in which data are repeatedly partitioned into two non-overlapping subsets. In each 
iteration, classifiers are trained on one set and tested on the other and the results of multiple 
iterations are averaged together. Because the training and testing sets are disjoint in each 
iteration, the average performance on the test sets is believed to provide an unbiased estimate of 
classifier performance on out-of-sample data. However, such an estimate can only be believed as 
long as one important restriction is obeyed: After performing cross-validation, the analysis chain 
used to classify the data must not be modified to obtain higher performance on that same data. 
Reusing the same data to optimize analysis parameters can induce overfitting, even if cross-
validation is used at each iteration. Overfitting can arise both from alteration of data 
preprocessing (e.g. artifact rejection thresholds, channel or voxel selection, feature weights, or 
other parameter modifications) or modifications to the classifier (e.g. kernel selection, statistical 
model used).  

The reason that overfitting can occur despite cross validation is that all data sets are composed of 
an inseparable combination of signal and noise. The signal is the portion of the data containing 
the useful information that one would like the machine learning classifier to discover while the 
noise includes other sources of variability.. However, when an analysis is optimized over 
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multiple runs, the choice of hyperparameters can be influenced by how the noise affected the 
classification accuracy. Consequently, while the optimization improves classification accuracy 
on the data that are being tested, performance may remain constant or even worsen on out-of-
sample data, because some portion of its noise is not shared with the in-sample data (Figure 1).  

The inability of cross validation to prevent overfitting, is well known in the machine learning and 
machine vision communities (Domingos 2012), which are taking increasing care to avoid the 
problem. For example, machine-learning competitions on websites such as Kaggle.com provide 
contestants with sample data on which to optimize their models. The final evaluation of the 
contestants is performed on a different data set that is either held as confidential by the 
sponsoring organization, or is released only a few days before the end of the competition. 
Contestants who find ways to access the data more often than the rules permit are disqualified, 
their organizations can be barred from future competitions and in one recent high-profile case a 
lead scientist was fired (Markoff 2015).  

In writing this paper, we share the experience of our colleagues in the physics and computer 
science disciplines so as to adopt more rigorous standards of machine learning before a new 
replicability crisis unfolds. It is not our intent to call out specific examples of bad practice in the 
literature, although in our survey of the neuroscience classification literature we found very few 
cases in which the appropriate precautions had clearly been used (i.e. some variety of blind or 
lock box analysis which will be described below). Without these precautions it is impossible to 
determine from a paper’s methods whether overfitting occurred (unlike the identifiable double-
dipping described by Kriegskorte, Simmons, Belgowan & Baker 2009). The difficulty in 
identifying cases of overfitting is that it would have occurred during the optimization of the 
analysis, and these steps are typically omitted from the methods. Another issue that we observe 
in the literature is that terminology is used inconsistently, which makes it hard to understand 
exactly what was done. To help clarify terminology, we offer a table describing common terms 
and descriptions of what they are typically taken to mean (Table 1). We suggest a new term, the 
Lock box, which refers to a set of data that is held-out from the optimization process for 
verification and should not be consulted until the methods have been completely determined. The 
term held-out data set is sometimes taken to mean this, but that term is used inconsistently and is 
easy to misinterpret. The term lock box more clearly indicates the importance of holding the data 
in reserve. More will be said about this below.  

Next we provide clear examples of overfitting despite use of cross-validation using a sample of 
EEG data recorded from our own lab. We use real data here instead of simulated data, to ensure 
that the noise reflects the genuine variability typically found in similar datasets. In the described 
experiment, EEG data were collected while subjects tried to detect different kinds of targets. A 
support vector machine (SVM) classifier was used with various kernel function parameters to 
determine from EEG data alone what kind of target was present in a given trial. Hyperparameters 
were iteratively optimized through a genetic algorithm using a cross validation procedure. 
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Performance was compared to lock box data items that were set aside and not used in the genetic 
algorithm's fitness function. Performance was shown to improve on the data on which the 
classifiers were optimized, but not on the lock box data, which is a clear-cut demonstration of 
overfitting. Note that overfitting was relatively easy to evoke, despite the use of cross-validation. 
The obtained results, presented below, demonstrate that classifiers can easily be overfit to obtain 
performance that will not generalize to set-aside or out-of-sample data.  

METHODS 

EEG METHODS 
Data from a previously collected, unpublished EEG data set were used for classification analysis. 
Since the aim of the paper is to demonstrate the misuse of analysis methods, only a brief 
description will be provided here, and readers can consult the supplementary methods for a more 
in-depth description. Data from 30 subjects were used, all of whom provided informed consent. 
Subjects were attempting to detect and identify targets in either of two streams of changing black 
letters, where targets could be either a colored letter (colored-singleton: CS) or black digit 
(Orthographic: Ortho). Data were collected from a 32-channel sintered Ag/AgC1 electrode array 
mounted in an elastic cap connected to a Neuroscan Synamps amplifier. Data were collected 
with a band pass filter of 0.05 to 100 Hz and were resampled to 250 Hz. Trials were rejected for 
excessive noise or eye movements. All ERPs were time locked to the first target onset. The 
baseline from a window -200 ms to 0 ms relative to T1 onset was subtracted from each trial. 

STATISTICAL METHODS 

USING NESTED CROSS-VALIDATION TO DEMONSTRATE OVERFITTING OF 
WEAKLY INFORMATIVE DATA 

Data were selected to be potentially, but at most weakly informative of the target type. The 64 
data points (256 ms) from each EEG channel following target onset were extracted from each 
trial and subjected to a Fast Fourier Transform (FFT). The log of the absolute value of the FFT 
was computed, and frequency bands across all leads were summed, resulting in 64 frequency 
values per trial. The goal of the classification would be to determine whether subjects had seen a 
CS or Ortho target within a given trial based just on these 64 frequency values that represented 
the scalp-wide power spectrum from the 256ms time period after target onset. 

Nested cross-validation was used to evaluate overfitting. In this case, nested cross-validation is a 
procedure in which data is first divided into two sets: a parameter optimization set and a lock 
box. The parameter optimization set is used to optimize the model’s hyperparameters and 
thereby increase performance. The lock box is used to evaluate out-of-sample performance, and 
is not used for hyperparameter optimization. In the absence of overfitting, the model's 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2016. ; https://doi.org/10.1101/078816doi: bioRxiv preprint 

https://doi.org/10.1101/078816
http://creativecommons.org/licenses/by-nc/4.0/


6 
 

performance on the optimization set and lock box should be comparable at both the start and the 
end of the optimization process.  

A support vector machine (SVM) classifier was used to classify the post-processed EEG data. 
The nested cross-validation procedure used a randomly-selected 85% of the trials for the 
parameter optimization set and the remaining 15% of the trials for the lock box. The entire 
parameter optimization set was then repeatedly partitioned into an inner training and inner 
testing set, and those inner sets were used in conjunction with a genetic algorithm in order to 
optimize feature weight vectors, which will be discussed below. All SVM classifiers used a 
radial basis function (RBF) kernel with 𝛾 = 25. 

Optimization of the analysis was done by modifying a vector of 64 feature weights that were 
multiplied by the power values from the FFT analysis to allow the SVM classification to be 
focused on the most relevant frequency bands. At the start of the optimization procedure, 10 
feature weight vectors were randomly constructed with 64 values ranging from 0.95 to 1.05. The 
parameter optimization set was then 10-fold cross-validated 10 times (i.e. the entire parameter 
optimization set was independently split ten times into inner training / inner testing sets 
consisting of 90% / 10% of data) for each feature weight vector, and the feature weight vector 
that produced the highest mean area under the curve (AUC) was declared the best vector. All 
other feature vectors were discarded, and nine new vectors were created by mutating the winner. 
This mutation process involved adding vectors of random numbers with amplitudes ranging from 
-0.05 to 0.05 to the best vector. This process was repeated 200 times to optimize the analysis. 

To measure overfitting, after each cross-validation procedure on the parameter optimization set, 
the best feature weight vector was also used to classify the lock box. It should be noted that this 
was done merely to test for overfitting, and accessing a lock box multiple times can itself result 
in overfitting (if the results are used to influence analysis choices or stopping criteria). In this 
paradigm, only the results on the parameter optimization set were used to influence the 
optimization, as the genetic algorithm mutates the feature vector that performed best on the that 
set (irrespective of performance on the lock box). 

To measure the statistical significance of the model's classification on the parameter optimization 
set, a permutation test was run after the final generation of the genetic algorithm. First, the 
analysis result was computed as the mean AUC across the ten inner training/testing partitions of 
the parameter optimization set (as above) using the final generation of feature weights. Then, all 
condition labels for the trials (i.e. the target-type) were randomly shuffled 100 times. After each 
such shuffling, for each of the ten partitions, the SVM classifier was retrained with the final 
feature vector and the AUC was measured. This process produced ten AUC values per shuffling, 
with one per partition. Then, for each shuffling, all ten AUC values were averaged together, 
producing one mean result per shuffling. This produced a null-hypothesis distribution of 100 
mean AUC values. The p-value was then computed as the fraction of the null-hypothesis 
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distribution that was larger than the non-permutated classification result (i.e. the proportion of 
shufflings that produced a mean AUC greater than the mean AUC on the unshuffled data). 

This entire nested cross-validation procedure was repeated independently 15 times to 
demonstrate the robustness of overfitting. In each case, the data were randomly repartitioned into 
a parameter optimization set and a lock box, and the genetic algorithm was used to optimize 
feature weights for the parameter optimization set over 200 generations. Results are presented 
separately for each of the 15 independent runs.  

USING NESTED CROSS-VALIDATION TO DEMONSTRATE OVERFITTING OF 
NON-INFORMATIVE DATA 

This analysis was repeated to demonstrate overfitting on entirely non-informative data. This was 
accomplished by using the same data and procedures as in the previous section, but randomly 
shuffling the target-type labels at the beginning of each analysis. This should result in 
classification failure (i.e. AUC = 0.50), and any result better than chance is indicative of 
overfitting.  

OVERFITTING VIA KERNEL SELECTION 

A final test was run to demonstrate that overfitting can occur by manipulating the 
hyperparameters of the SVM classifier, rather than feature weights. After partitioning data into a 
parameter optimization set and a lock box, different SVM kernel functions and parameters were 
used to classify the data. Mean performance through cross-validation of the parameter 
optimization set was compared with performance on the lock box. This was done for both the 
weakly-informative and non-informative data. For the weakly-informative data, a high 
correlation between results on the parameter optimization set and lock box would demonstrate 
genuine improvement in classifier performance while uncorrelated results would indicate 
overfitting. For the non-informative data, results better than chance (AUC = 0.50) would indicate 
overfitting. 

Three different SVM kernels were used: radial basis function kernels 𝑘!, polynomial kernels 𝑘!, 
and sigmoidal kernels 𝑘!. These kernel functions are given by 

𝑘! = 𝑒
! 

!!!!!
!

!!  

𝑘! = 1+ 𝑐!𝑥! ⋅ 𝑥! ! 

𝑘! = tanh 𝛾𝑥! ⋅ 𝑥! − 𝐶!  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2016. ; https://doi.org/10.1101/078816doi: bioRxiv preprint 

https://doi.org/10.1101/078816
http://creativecommons.org/licenses/by-nc/4.0/


8 
 

where 𝑥! and 𝑥! are the input feature vectors and 𝛾 and 𝐶! are free parameters. For 𝑘! and 𝑘!, 𝛾 
was varied from 1 to 50 in increments of 1; for 𝑘!, 𝛾 and 𝐶! were randomly selected from the 
range [10!!, 10!], where values were evenly distributed across orders of magnitude. 50 different 
parameter sets were used for each kernel function. No genetic algorithm is used in this case.  

RESULTS 

The results on weakly-informative data are shown in Figure 2, which shows that performance 
improves on the parameter optimization set without similar changes on the lock box. This 
demonstrates that overfitting is occurring. The mean AUC at the start and end of the genetic 
algorithm process is listed in Table 2. 

Feature weight optimization on non-informative data has a similar effect as shown in Figure 3. 
Without overfitting, performance should remain at levels of chance, i.e. AUC = 0.50. However, 
performance improved on all 15 runs, with a significant improvement relative to randomly 
shuffled data on all but one of the runs. The mean AUC at the start and end of the process is 
listed in Table 3.  

The results of overfitting by kernel selection are shown in Figure 4. If overfitting is not 
occurring, and the kernel selection genuinely improves performance, then performance on the 
parameter optimization set and lock box should be highly correlated. The evident lack of 
correlation here shows that choosing the best-performing kernel on the parameter optimization 
set does not generalize to the out-of-sample data, which is a form of overfitting. 

DISCUSSION 

This paper demonstrates the ease with which overfitting can be induced when using machine 
learning algorithms despite the use of cross-validation. Any kind of iterative optimization of 
analysis hyperparameters is capable of causing overfitting. The approach used here is analogous 
to optimization procedures that are used in EEG classification such as discarding channels to 
improve classification performance. Our results show that if such selection is performed 
repeatedly on the same data then there is a substantial likelihood of overfitting, even with the use 
of cross-validation. Similar problems may exist with other hyperparameters, e.g. choosing time 
windows, frequency bands, or different ways of filtering out artifacts. This danger is present for 
both automated and manual parameter optimization.  

Moreover, the same concerns apply to any kind of large neural data set. For example, in the case 
of using multi-voxel pattern-analysis (MVPA) on fMRI data, iterative optimization through 
selection of voxels or regions would lead to the same kinds of overfitting that we demonstrate 
here.  
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These results should not be taken to indict cross-validation as a poor methodological choice: It is 
considered to be state-of-the-art by many in the machine vision and machine learning 
communities for good theoretical and practical reasons (Arlot & Celisse 2010). However, our 
result does clearly indicate that cross-validation does not permit limitless analysis optimization. 

There are several ways in which overfitting can be protected against, above and beyond cross-
validation. We suggest that, in order to increase generalizability and replicability, journals 
publishing data from classification analyses encourage the use of one of the approaches listed 
below.  

THE LOCK BOX APPROACH. 

Setting aside a lock box of data makes it possible to determine whether overfitting has occurred. 
This entails setting aside an amount of data at the beginning of an analysis and not accessing that 
data until the analysis protocol is clearly defined, which includes all stages of pre-processing, 
artifact correction/rejection, channel or voxel selection, kernel parameter choice, and the 
selection of all other hyperparameters. This technique is already standard practice in machine 
vision competitions. When submitting a candidate for such a competition, the ultimate 
performance of the algorithm is evaluated on a separate set of data that is reserved until the final 
stage of the test. The workflow of using a lock box is shown in Figure 5.  

We suggest that, moving forward, machine classification approaches to data analysis in 
neuroscience routinely incorporate a lock box approach, in which data are set aside at the 
beginning of the development of an analysis and not assessed until the paper is ready for 
submission. At this point, the data in the lock box should be accessed just one time (ideally) to 
generate an unbiased estimate of the algorithm’s performance on the out-of-sample data. This 
result is likely to be less favorable than the data that were being used during optimization and 
should be published alongside the result from the cross-validation.  

If it turns out that the results from the lock box test are unsatisfactory, a new analysis might be 
attempted, but if so, the lock box should be re-loaded with new data, either collected from a new 
sample or from additional data that were set aside at the beginning of the analysis (but not from a 
repartitioning of the same data that had originally been used). A possible alternative is to access 
the lock box multiple times during optimization, but to apply a correction to any resultant 
statistics as a function of the number of times the lock box data was evaluated.  

Note that this lock box approach is evaluative. It does not prevent overfitting, but allows one to 
test whether it has occurred. However, the performance of the algorithm on the lock box is a 
non-overfit result. 

THE BLIND ANALYSIS APPROACH 
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Blind analysis is an appropriate tool for preventing overfitting when testing a well-defined 
hypothesis. Under a blind analysis scheme, the input data is modified in a reversible way to 
prevent the optimization process from inadvertently becoming tuned to noise patterns in the data 
that are differential with regard to the contrast of interest. Some examples of using blind analysis 
include scrambling all condition labels and then adding some amount of noise to all signals (e.g. 
artificially increasing the amplitude of the P300 in one condition), or artificially adding ‘target 
signals’ to trials. The hyperparameters of the model can then be optimized to detect the features 
present in the modified data. Once the hyperparameters are locked in, the blind can be lifted (e.g. 
conditions unscrambled, noise removed), and the unbiased results can be calculated. The 
advantage of this approach is that all of the data can be used during the optimization phase, and 
the final evaluation of performance can be done across all of the data instead of just the outer-
box set. Note that blind-analysis is a way to minmize overfitting. If used in conjunction with a 
lock box, one can both minimize and diagnose overfitting.  

THE PRE-REGISTRATION APPROACH 
Cross-validation does succeed in providing an unbiased estimate of out-of-sample performance 
when classification results are not used to iteratively optimize performance. Therefore, it is safe 
to pre-register a classification analysis before attempting it. Assuming that it is done in good 
faith, the pre-registration would provide evidence that the analysis hyperparameters were 
finalized prior to attempting the analysis using previously established methods. The advantage of 
this approach over the lock box is that all of the data can be used in the final estimate of 
performance. The disadvantage is that hyperparameter optimization is not permitted, which 
limits the success of the analysis.  

CONCLUSION 

The biggest danger of data science is that the methods are powerful enough to find apparent 
signal in noise, and thus the likelihood of data overfitting is substantial. Our results illustrate how 
easily overfitting can occur despite the use of cross validation. It can be difficult to detect 
overfitting without having an abundance of data, which can be costly to collect in the case of 
neuroscience. However, as reproducibility is a cornerstone of scientific research, it is vital that 
some method of assuring out-of-sample generalizability be used. By setting aside an amount of 
data that is not accessed until the absolute completion of model modification (i.e. a lock box), 
one can get an unbiased estimate of the generalizability of one’s system and of how much 
overfitting has occurred. Alternatively, blind analysis methods and good faith pre-registrations of 
the analysis parameters minimize the possibility for overfitting to occur. Conversely, using any 
method that allows one to check performance on the same data repeatedly without independent 
data that has not been consulted can induce overfitting, inflating false positive results and 
damaging replicability. Some attention to these dangers at this point, when machine learning 
approaches in neuroscience are relatively nascent, will allow us to improve the state of science 
before inappropriate methods become standardized.  
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TABLES 

Table 1. The terminology used in this and other papers are defined in this table. 

Term Definition 

Machine Learning Machine learning is the use of highly powerful mathematical tools to discern 
patterns in data. Typically, machine learning algorithms are trained with labeled 
data from two or more classes, and are then used to predict which class a new 
and unlabeled data item belongs to. Examples of machine learning algorithms 
are support vector machines (SVM) classifiers, random forest models, and 
naive Bayes classifiers. 

Training and 
Testing sets 

These terms generally refer to the two subsets of data used during cross-
validation. However the term test-set is sometimes used to refer to data that has 
been set-aside for later evaluation. We advise against that usage for the sake of 
consistency.  

Nested Cross-
Validation 

Nested cross-validation is the single partitioning of data into two sets: a 
parameter optimization set, and a lock box, for final evaluation. The parameter 
optimization set can then be repeatedly repartitioned into an inner training and 
inner testing set. Through this repartitioning, the model's parameters are 
optimized, and then an unbiased estimate of the performance of the model on 
out-of-sample data can be achieved by accessing the lock box. This method is 
still vulnerable to overfitting if the entire dataset is re-partitioned into new 
optimization and lock box sets. 

Parameter 
Optimization Set 

Used in a nested cross-validation scheme, a parameter optimization set is a 
partition of the data used to optimize model parameters. By optimizing only on 
the parameter optimization set, and by only checking performance once on the 
lock box set, one can obtain an unbiased estimate of model performance. 
Parameter optimization sets can be cross-validated (repeatedly and 
independently divided into inner training/testing sets) to train and test a model. 

Lock Box We provide the term lock box to mean a subset of data that are removed from 
the analysis pipeline at the very start of optimization and not accessed until all 
parameter adjustments and training have been completed. In this paper, the lock 
box is accessed several times: This is done merely to demonstrate overfitting, 
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and doing so in practice could itself lead to overfitting to the lock box. 

Hyperparameters Often synonymous with parameters, hyperparameters refer to the constants that 
can be adjusted to modify model performance prior to the classification stage. 
Some common hyperparameters are feature weights, SVM kernel function 
parameters, and (especially in EEG) artifact rejection thresholds. 

 

Table 2. The average AUC at the start and the finish of the parameter optimization process on 
weakly-informative data. If overfitting had not occurred, then performance would have been 
comparable at both the start and the end of the process for both the inner optimization and outer 
lock box sets. 

 Starting AUC Ending AUC 

Inner 0.50 ± 0.02 0.59 ± 0.02 

Outer 0.50 ± 0.05 0.48 ± 0.05 

 

Table 3. The average AUC at the start and the finish of the parameter optimization process on 
non-informative data. Without overfitting, performance should remain around levels of chance, 
i.e. AUC = 0.50. However, performance improves on the inner optimization set, demonstrating 
that overfitting has occurred. 

 Starting AUC Ending AUC 

Inner 0.50 ± 0.03 0.63 ± 0.03 

Outer 0.52 ± 0.05 0.49 ± 0.06 
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FIGURES 

 

Figure 1. An example of how overfitting can be induced by modifying model hyperparameters 
after evaluating a system through cross-validation. It should be noted that overfitting can still 
occur even if, on each iteration, the same data is re-partitioned into unique training and testing 
sets, due to the feedback loop allowing hyperparameters to be adjusted. 
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Figure 2. 15 tests of overfitting with cross-validation. EEG data is partitioned into a parameter 
optimization set and a lock box. A genetic algorithm is used to optimize feature weights over the 
parameter optimization set. Average area under the curve (AUC) on the parameter optimization 
set is reported each generation for the best feature weight vector (as computed through a ten-fold 
cross-validation procedure). To demonstrate overfitting, AUC is also computed each generation 
for the best feature weight vector on the lock box. If the model was optimizing to the signal, and 
not overfitting to the noise, performance would correspondingly rise for both the parameter 
optimization set and the lock box. P-values are computed for the parameter optimization set 
through a permutation test on the final generation of the genetic algorithm. (It should be noted 
that accessing a lock box multiple times can lead to overfitting. In practice, lock boxes should 
only be accessed at the end of the parameter optimization process.) 
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Figure 3. To demonstrate that models can be overfitted to non-informative data, the same test 
that was run in Figure 2 was run on EEG signals with randomly-assigned condition labels. Thus, 
the two classes the data was sorted into were (in a statistical sense) identical, and results should 
be at levels of chance (AUC = 0.50). However, through hyperparameter optimization, better-
than-chance results can be achieved even on completely random data. P-values are computed for 
the parameter optimization set through a permutation test on the final generation of the genetic 
algorithm. (It should be noted that accessing a lock box multiple times can lead to overfitting. In 
practice, lock boxes should only be accessed at the end of the parameter optimization process.) 
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(b) 

Figure 4. Choosing a classification model through trial-and-error can result in overfitting. Here, 
the data is partitioned into a parameter optimization set and a lock box, and three different kernel 
functions are used to classify the data: radial basis function (RBF), polynomial (POLY), and 
sigmoidal (SIG). The parameters for each of these kernel functions are modified, and average 
performance on the parameter optimization set is compared to performance on the lock box. (a) 
Performance on weakly-informative data. If overfitting had not happened, then results would be 
highly correlated. Lines of best fit are shown as dotted lines, indicating that there is little-to-no 
correlation between the results. (b) Performance on non-informative data. If overfitting had not 
happened, then all results would be both correlated and at the level of chance (AUC = 0.50). 
These tests demonstrate that model selection alone can induce overfitting. 
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Figure 5. Here the workflow of using a lock box is demonstrated. Data is first divided into a 
parameter optimization set and a lock box. The model can be repeatedly tested and parameters 
can be iteratively modified on the parameter optimization set. After all hyperparameter 
optimization and model workflow is determined, the model can be tested against the lock box 
data. By doing this, an unbiased estimate of overfitting can be obtained, and an objective 
measure of how well this system will generalize to out-of-sample data is achieved. 
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