Assessing the Relationship Between Vegetation Structure and Harvestmen Assemblage in an Amazonian Upland Forest

Pío A. Colmenares¹, Fabrício B. Baccaro² & Ana Lúcia Tourinho¹

1. Instituto Nacional de Pesquisas da Amazônia, INPA, Coordenação de Pesquisas em Biodiversidade. Avenida André Araújo, 2936, Aleixo, CEP 69011–970, Cx. Postal 478, Manaus, AM, Brasil.

2. Departamento de Biologia, Universidade Federal do Amazonas, UFAM. Manaus, AM, Brasil.

Corresponding author: Ana Lúcia Tourinho amtourinho@gmail.com

Running Title: Vegetation Structure and Harvestmen’s Relationship

Abstract

1. Arthropod diversity and non-flying arthropod food web are strongly influenced by habitat components related to plant architecture and habitat structural complexity. However, we still poorly understand the relationship between arthropod diversity and the vegetation structure at different spatial scales. Here, we examined how harvestmen assemblages are distributed across six local scale habitats (trees, dead trunks, palms, bushes, herbs and litter), and along three proxies of vegetation structure (number of palms, number of trees and litter depth) at mesoscale.

2. We collected harvestmen using cryptic manual search in 30 permanent plots of 250 m² at Reserva Ducke, Amazonas, Brazil. The 30 plots cover approximately 25 km² of upland...
forests. At a local scale, harvestmen were most diverse and abundant on trees. The likely preference of trees by harvestmen may be related to the variety of local microhabitats offered by large trees. However, despite the strong link between number of harvestman species and individuals with large trees, only harvestmen assemblages composition were related with number of trees and with number of palms, at mesoscale.

3. Harvestman richness and abundance were not related with any vegetation structure predictor at mesoscale. Therefore, areas of upland forest in the central Amazon with large trees and palms do not harbor more harvestman species nor individuals, but are suitable to maintain different harvestmen assemblages.

Keywords: Amazon, Arachnida, Opiliones, community ecology, microhabitat, big trees, palms, conservation.

Introduction

Tropical forests occupy 11% of the earth’s surface yet maintain more than 60% of its terrestrial biodiversity (Wilson, 2000). The reason that promotes such highly concentration of plant and animal diversity remains contentious (Hubbell, 2001; Novotny *et al.*, 2006), but there is compelling evidence that tropical diversity is influenced and maintained by wide environmental gradients and habitat structural heterogeneity (Gardner *et al.*, 1995; Halaj *et al.*, 2000). In the Amazon rainforest several arthropod assemblages have been characterized and related to environmental gradients. For instance, ant diversity is affected by water table depth variation (Baccaro *et al.*, 2013), ants influence termites (Pequeno & Pantoja, 2012), different environmental predictors...
affect cockroaches simultaneously (Tarli et al., 2013), and understory forest structure affect harvestmen assemblages (Tourinho et al., 2014; Porto et al., 2016). However, few studies investigated how non-flying arthropods are limited or affected by vegetation structure (Vasconcelos et al., 2008; Donoso et al., 2010) and we still poorly understand the role of vegetation structure on arthropod diversity in forested areas at different spatial scales.

Arachnids represent one of the most diverse groups of arthropods, and around 2% of described species occurs in the Amazon basin (Adis & Harvey, 2000). With more than 6600 species described (Kury, 2016), harvestmen represent the third most diverse order of arachnids, after spiders and mites, and are well represented in the Amazon biome (Kury & Pinto-da-Rocha, 2002). Harvestmen are mostly predators and strongly affected by temperature and humidity, thus, susceptible to dehydration (Curtis & Machado, 2007).

Only a few studies have investigated the relationship between harvestmen species and habitat structure. It was demonstrated that harvestmen assemblages from Atlantic forest are positive related to forest quality, responding more drastically to fragmentation than most arthropods (Bragagnolo et al., 2007). Proud et al., (2012) suggests that in tropical forests of Costa Rica, harvestmen can use trees as refuges when disturbed, but only in sites with higher harvestmen diversity in the ground/litter microhabitat. Recent evaluation of collecting techniques also offered evidence for a relationship between number of palm trees and harvestmen assemblage composition in upland Amazonian forest (Tourinho et al., 2014; Porto et al., 2016). However, how vegetation structure directly or indirectly influences harvestmen assemblages remains still little understood.
Here, we investigate the relationship between vegetation structure and a harvestmen assemblage in an upland forest in the Central Amazon at two different spatial scales. We investigate how harvestmen assemblages are distributed at local scale (plots of 500 m² each). We also test and describe the relationship of two direct proxies of vegetation structure (number of palms and number of trees) and one indirect proxy of vegetation structure (litter depth) with the harvestmen assemblage composition at mesoscale (25 km²).

Methods

Study area

The study area is located in the central Amazon, in the Reserva Forestal Adolpho Ducke (Fig. 1), which is a 100 km² fragment of terra firme forest administrated and protected by the Instituto Nacional de Pesquisas da Amazônia (INPA). The vegetation is typically upland rainforest, with a diversity of trees around 1200 species (Costa et al., 2009), with a canopy height of 30-35m above the ground. Annual mean temperature is 26°C. Annual precipitation is between 1.900-2.300 mm³, and the wet season usually begins in November and lasts until May (Baccaro et al., 2008). Altitudinal variation is between 30-180 m asl.

Sampling design

A total of 30 plots were sampled between July and November 2014, covering an area of 25 km² (Fig. 1). Collecting plots were established following the RAPELD protocol (Magnusson et al., 2005). Each plot is a 250 m transect with variable width, and the
distance between them is 1 km. Two experienced collectors sampled every plot in a single visit for one hour. The sampling were undertaken along one meter to each side of the main line of the 250 m-long plots, totalizing 500 m² of sampled area per plot (2 x 250 m). Along the survey, all harvestman found within the plot were collected. The habitat occupied by each individual was recorded at the moment of the capture, and were classified into trees, dead trunks, palms, bushes, herbs and litter. Harvestmen were collected using cryptic manual searching, which focus on specific habitats described above (Porto et al., 2016). This method allows for collection of more species and individuals compared with traditional surveys (Porto et al., 2016).

Species data

To identify harvestmen species we examined the external morphology under a stereomicroscope and compared with the original descriptions provided in the literature (Pinto-da-Rocha, 1994, 1996, 1997, 2004; Kury, 2003) type material or pictures of the type material. Nymphs and females with ambiguous morphology were excluded. In the case of groups with a very conservative external morphology and/or poorly understood taxonomy (e.g. Cosmetidae, Sclerosomatidae, Zalmoxidae) we also prepared their male genitalia to allow proper species delimitation, following Acosta et al., (2007). Material is labeled and deposited in the Invertebrate collection at INPA (curator Celio Magalhães).

Environmental data

We tested two direct proxies of vegetation structure as habitats available for harvestmen: number of palms (NPalm) and number of trees with diameter at breast height > 30 cm
(DBH30); and litter depth (Litter) as an indirect proxy of vegetation structure. The number of trees, palms and litter depth were obtained from the data repository of the PPBio program (ppbio.inpa.gov.br). Within plots, all trees with diameter at breast height > 30 cm (DBH30) in 1 ha (40 m x 250 m) were mapped, and their diameters at 1.30 m (DBH) measured (Castilho et al., 2006). The same protocol was used to count and map the palm trees within plots. At every 5 m along the long axis of the plots, a measurement of litter depth was taken. Measurements consisted of forcing a stick of 0.5 cm in diameter into the litter until it reached the soil and noting the distance in cm between the top piece of litter and the soil. In addition, we also measured the diameter at breast high of trees with harvestmen during the sampling surveys.

Data analysis

We generated two data matrices: one for the local scale analysis, using the habitats recorded at the moment of the capture (trees, dead trunks, palms, bushes, herbs and litter) as objects and species as columns, and another matrix for the mesoscale analysis using plots as objects and species as columns.

For species richness we used the total number of species collected per plot, for abundance we used the total number of individuals sampled per plot. We compared the number of species and abundance per plot (local scale) between each habitat predictor using analysis of variance ANOVA. Tukey’s Honest Significance Difference method was used to compute the 95% confidence interval for each factor. Residual analyses were used to investigate model assumptions.
For the mesoscale analysis, species composition per plot was summarized in a single multivariate axis using Non-metric Multidimensional Scaling (NMDS), based on Bray-Curtis dissimilarity distances of the original abundance matrix. To evaluate the effect of vegetation structure on the harvestmen assemblage, we performed multiple regressions for each dependent variable against the independent variables, as follows:

\[\text{NMDS axis} = a + b(\text{Palms}) + b(\text{DBH30}) + b(\text{Litter}), \]
\[\text{richness} = a + b(\text{Palms}) + b(\text{DBH30}) + b(\text{Litter}), \]
\[\text{abundance} = a + b(\text{Palms}) + b(\text{DBH30}) + b(\text{Litter}). \]

Partial regression plots were generated to show the relationships between variables. All three independent variables showed low correlation \((r < 0.3)\).

Results

A total of 689 adult harvestmen were collected, representing 27 species and 12 families (Table 1). The most abundant families were Cosmetidae (37.44% of total abundance) and Sclerosomatidae (22.78% of total abundance). The most common species were *Eucynortella dupunctata* (183 individuals), *Caluga* sp. 1 (83 individuals) and *Cynorta* sp. 1 (75 individuals). Abundance per plot ranged from nine to 54, with a mean of 22.96 individuals. Richness per plot varied between four to 13, with a mean of 7.93 species.

With 85.18% of species and 38.89% of individuals sampled, trees harbored the most diverse and abundant harvestman assemblage (ANOVA \(F_{5,174} = 15.16, P < 0.001\) and \(F_{5,175} = 55.13, P < 0.001\) respectively) (Figs. 2-3). The second most diverse habitat was herbs, while the third most abundant habitat was litter, but no strong effects were detected among other habitats. Bushes were the less diverse and harbors fewer
harvestmen. Richness and abundance for the six habitats evaluated are summarized in table 2. Smaller Stygnidae such as *Verrucastygnus hoeferscovitorum* and *Ricstygnus* sp. 1 showed preference for the litter habitat, occasionally going on short herbs. Gonyleptids species of *Discocyrtus* showed habitat segregation, with individuals of *Discocyrtus carvalhoi* occurring only on live trees, and individuals of *Discocyrtus* sp. 1 occurring on fallen dead trunks. The two Escadabiidae collected were found on large trees with corrugated bark. All individuals of the Fissiphalliidae collected in our study, *Fissiphallius martensi*, were detected on trees with corrugated bark. As something unusual, we found one specimen of *Brasilogovea microphaga* climbing on a tree, which represents the first record of climbing behavior for a Cyphophtalmi.

The number of trees with diameter at breast height > 30 cm varied between 87 to 128 per plot (mean = 105.2). Conversely, the number of palms showed a wider range, varying between 97 to 448 palm trees per plot (mean = 269.7). The litter depth also varied largely between plots, ranging from only 1.31 to 4.18 cm (mean = 2.3 cm).

The NMDS ordination axis captured 59.55% of the variation of the species composition data (F = 640.4; DF = 1,433; P < 0.001). The multiple regression model, with the species composition as the response variable (NMDS Axis), explained 41.7% of the variation in the data (r² = 0.417, P = 0.002) (Fig. 4). The independent variables that contributed significantly to the model were number of palms (b = 0.450, P = 0.005) and number of trees with diameter above breast height > 30 cm (b = 0.346, P = 0.036). Litter depth did not affect species composition. Multiple regression models for richness and abundance were non-significant. Results of regression models are summarized in table 3.
Discussion

Harvestman diversity was related to local and meso scale gradients created by vegetation structure at this forest. At local scale, trees harbored the most diversity and abundant harvestman assemblages, compared with other available habitats. At meso scale number of trees and palms were the best predictors of harvestman composition, while both were not related with harvestman richness or abundance. In context, the harvestmen diversity at Reserva Ducke is comparable with recent harvestmen inventories carried out in different localities of upland forest across the Amazon region (Pinto-da-Rocha & Bonaldo, 2006; Bonaldo et al., 2009; Tourinho et al., 2014, Porto et al., 2016), with number of collected species ranging between 26 to 30. Cosmetidae and Sclerosomatidae were the most abundant families, while Stygnidae and Sclerosomatidae were the most diverse groups, with five and four species collected each.

Harvestmen diversity at local scale.

Large trees can offer microhabitats such as cracks, bark pockets, bark pockets with decay, bowls in bark, stem cavities, witch broom, hollow chambers on butt of trees, among other 12 tree microhabitats defined by Michel and Winter (2009), which are probably suitable for harvestmen. A total of 23 species out of 27 were found foraging on trees, indicating that trees might be one of the most important habitats for harvestmen at local scale. From these, six species were found exclusively on trees. These species were observed mainly on trees with a highly corrugated bark and big roots (locally known as sapopemas), suggesting that harvestmen could be using bark pockets, cracks and cavities as refuge or
for prey source. For instance, most individuals of Samoidae Genus 1 sp. 1 were found
while foraging in tree bark pockets and cracks.

The use of tree bark may be related to harvestmen size. With the exception of the
gonyleptids of the genus *Discocyrtus*, all species found only on trees were small (dorsal
scutum length < 2.5 mm). In addition, due to their larger mass, large diameter trees
provide temperature-buffering microhabitats (Brower *et al*., 2009). This could be of
benefit for some harvestmen species, especially the smaller ones that probably are more
vulnerable to changes in temperature and moisture.

Abundance of harvestman per tree was also higher in larger trees than in smaller
trees or shrubs for this assemblage. This can also be related to quantity of microhabitats
available in the tree bark. In addition, large harvestman species can also take advantage
of trees, as known for the cranaid *Phareicranaus manauara*, which uses trees in its
reproductive strategy (Colmenares & Tourinho, 2014).

Despite the high aggregation on trees, some harvestman species were sampled in
different habitats. Species of Sclerosomatidae were more generalist, occupying almost all
microhabitats, with *Caluga* sp. 1 as the only species distributed across all available local
habitats. The longer lengths of legs and the high number of tarsomeres, which increase
their capacity to climb and reach upper places on the vegetation, can explain this
observation (Adams, 1984; Proud *et al*., 2012). However, *Prionostemma* sp. is probably
specialized in using some specific mature tree trunks that have surface color patterns
similar to its body color, facilitating camouflage. From the 34 individuals collected, 32
were on trees while only 2 were found in bushes and leaf litter.
Relationship between vegetation structure and harvestmen assemblages.

A more complex habitat can allow the co-occurrence of more harvestmen species by increasing the availability of microhabitats (Proud et al., 2012). It is known that diversity and quantity of microhabitats increases with tree diameter, promoting their use by vertebrates and invertebrates and acting as predictor of biodiversity (Michel & Winter, 2009). Thus, more trees with DBH above 30 cm per plot should mean more microhabitats available for all invertebrates in the study area, including harvestmen. However, our data show that either species richness or abundance at the meso scale may not be directly related with number of trees or palms. However, species composition per plot was related with vegetation structure predictors. Thus, plots with a higher number of large trees or higher number of palms may not affect the total number of species or individuals, but harbors different assemblages composition. Palm dwellers, can show lower abundances in plots with less palm trees, while trees dwellers, can be more abundant in plots with more large trees available.

We observed that harvestman use both faces of palm leaves for foraging, and Vasconcelos et al., (1990) suggested that acaulescent palms can increase habitat complexity, as a consequence of the fallen litter trapped on their leaves. Tourinho et al., (2014) and Porto et al., (2016) also suggested that palms might be reflecting the overall variation of habitat structure. Thus, we can hypothesize that, at least for Reserva Ducke, more palms in a given plot would proportionally change the availability of other kinds of microhabitats, such as the ones related to trees, dead trunks and leaf-litter trapped in acaulescent palms. Consequently, plots with higher number of palms would
proportionally harbor more palm dwellers species. The same relation may be applied to
number of trees per plot.

Harvestman species composition can also be affected by the increment in the
numbers and abundance of generalist and vegetation dwellers, which are usually more
abundant than tree and ground dwellers. For instance, *Caluga* sp. 1, *E. duapunctata*,
Prionostemma sp. 1 and *Protimesius longipalpis*, among others, could benefit from the
number of palms, but species like Samoidae Genus 1 sp. 1, Gonyleptidae spp., and
Zalmoxidae *Chamaia* sp. 1, more related to trees, can be limited by the decrease of
adequate microhabitats. Moreover, two of the recorded species use palms in their
reproductive strategies. The stygnid *P. longipalpis* was recorded during our fieldwork
using fallen palm trunks as an alternative refuge for the nymphs. In Stygnidae, at least
another two species have been seen using palms leaves as a substrate to keep their
clutches (Villarreal & Machado, 2011). There is also evidence that *P. manauara* and
other *Phareicranaus* use fallen palm leaves and trunks to place their clutches and/or keep
their nymphs (Hunter *et al*., 2007; Proud *et al*., 2011; Colmenares & Tourinho, 2014).

It is widely known that large old trees sustain countless other species, their
hollows and crevices shelter many different animals and their branches and trunks are
real diverse gardens (Lindenmayer & Laurance, 2016). However, they are susceptible to
several threats including deforestation, logging, agriculture, drought, fire, windstorms,
invasive species, the development of human infrastructure, and climate change. Across
the planet old growth-forest have been cleared for human use and in the Amazon the
mortality rates of large old trees are growing very fast (Lindenmayer *et al*., 2012). Our
data suggest that areas of upland forest in the central Amazon with a balance between
number of large trees and palms are suitable to maintain a comprehensive assemblage of
harvestman species. Consequently, any disturbance resulting in reduction of the number
of large trees will have a strong impact on harvestmen diversity, especially by limiting
the occurrence of tree dwellers species. We know very little about the relationship of
other non-flying arthropod and tree structure, however, our results indicate the
conservation of large old trees and their global decline must be taken into consideration
as a major concern to keep harvestman diversity in Amazon rainforest.

Acknowledgements
José W. de Morais (INPA) helped with the transportation for the fieldwork. Isadora
Williams and Williams Porto helped as field assistants. Gonzalo Giribet kindly helped
with the identification of the Cyphophtalmi. The material for this study was obtained
under collecting permits 39557, granted from SISBIO to the first author. This study was
supported by the Coordination of Improvement of Higher Education Personnel - CAPES
(PEC-PG grant #5828104 to PAC and PNPD grant #03017/09–5 to ALT), Brazilian
National Council for Scientific and Technological Development – CNPq through the
Brazilian Research program for Biodiversity – PPBio, National Institute of Science and
Technology for Amazonian Biodiversity (INCT-CENBAM), The Program Science
without borders Special Visiting Professor (CSF/PVE) and The Program Science without
borders for both the Special Visiting Professor Grant (CAPES #003/2012), International
Postdoctoral grant (CNPq #200972/2013-8 to ALT) and Foundation Lemann for the
Lemann additional International fellowship to ALT.
References

arthropod diversity. Oecologia, 164, 201-211.

Tables

Table 1. Species collected at Reserva Ducke, and the habitats they occupied

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Trees</th>
<th>Trunks</th>
<th>Palms</th>
<th>Bushes</th>
<th>Herbs</th>
<th>Litter</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyphophtalmi-Neogoveidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brasilogovea microphaga</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Eupnoi-Sclerosomatidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caluga sp. 1</td>
<td>27</td>
<td>12</td>
<td>3</td>
<td>2</td>
<td>18</td>
<td>25</td>
<td>87</td>
</tr>
<tr>
<td>Caluga sp. 2</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>10</td>
<td>21</td>
</tr>
<tr>
<td>Geaya sp. 1</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Prionostemma sp. 1</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>34</td>
</tr>
<tr>
<td>Genus</td>
<td>Species</td>
<td>Count 1</td>
<td>Count 2</td>
<td>Count 3</td>
<td>Count 4</td>
<td>Count 5</td>
<td>Count 6</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Laniatores-Agoristenidae</td>
<td>Avima matintaperera</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Laniatores-Cosmetidae</td>
<td>Eucynortella duapunctata</td>
<td>17</td>
<td>5</td>
<td>53</td>
<td>5</td>
<td>81</td>
<td>22</td>
</tr>
<tr>
<td>Laniatores-Cranaidae</td>
<td>Cynorta sp. 1</td>
<td>51</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Laniatores-Cosmetidae</td>
<td>Phareicranaus manauara</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Laniatores-Escadabiiidae</td>
<td>Escadabius sp. 1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Laniatores-Escadabiiidae</td>
<td>Escadabius sp. 2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Laniatores-Fissiphaliidae</td>
<td>Fissiphallius martensi</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Laniatores-Gonyleptidae</td>
<td>Discocyrtus carvalhoi</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Laniatores-Gonyleptidae</td>
<td>Discocyrtus sp. 1</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Laniatores-Manaosbiidae</td>
<td>Manaosbia sp. 1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Laniatores-Manaosbiidae</td>
<td>Rhopalocranaus sp. 1</td>
<td>9</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Laniatores-Manaosbiidae</td>
<td>Rhopalocranaus rotundus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Laniatores-Manaosbiidae</td>
<td>Saramacia lucasae</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Laniatores-Samoidae</td>
<td>Maracaynatum sp. 1</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Laniatores-Samoidae</td>
<td>Genus 1 sp. 1</td>
<td>41</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Laniatores-Stygnidae</td>
<td>Verrucastygnus hoeferscovitorum</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Laniatores-Stygnidae</td>
<td>Protimesius longipalpis</td>
<td>5</td>
<td>2</td>
<td>15</td>
<td>1</td>
<td>21</td>
<td>4</td>
</tr>
<tr>
<td>Laniatores-Stygnidae</td>
<td>Protimesius sp. 1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Laniatores-Stygnidae</td>
<td>Stygnus pectinipes</td>
<td>13</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Laniatores-Stygnidae</td>
<td>Ricstygnus sp. 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Laniatores-Zalmoxidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Distribution of harvestmen across sampled habitat at Reserva Ducke. NSS = number of species sampled only on a given habitat

<table>
<thead>
<tr>
<th>Habitat</th>
<th>Richness</th>
<th>%</th>
<th>Abundance</th>
<th>%</th>
<th>NSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees</td>
<td>23</td>
<td>85.18</td>
<td>268</td>
<td>38.89</td>
<td>6</td>
</tr>
<tr>
<td>Dead trunks</td>
<td>13</td>
<td>48.14</td>
<td>69</td>
<td>10.01</td>
<td>1</td>
</tr>
<tr>
<td>Palms</td>
<td>7</td>
<td>25.92</td>
<td>90</td>
<td>13.06</td>
<td>0</td>
</tr>
<tr>
<td>Bushes</td>
<td>5</td>
<td>18.51</td>
<td>14</td>
<td>2.03</td>
<td>0</td>
</tr>
<tr>
<td>Herbs</td>
<td>12</td>
<td>44.44</td>
<td>150</td>
<td>21.77</td>
<td>0</td>
</tr>
<tr>
<td>Litter</td>
<td>14</td>
<td>51.85</td>
<td>98</td>
<td>14.22</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3. Multiple regression models for species composition (NMDS Axis), richness and abundance

<table>
<thead>
<tr>
<th>Response</th>
<th>Predictor</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>t</th>
<th>P</th>
<th>model R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMDS Axis</td>
<td>Intercept</td>
<td>-2.11</td>
<td>0.763</td>
<td>-2.766</td>
<td>0.01</td>
<td>0.417</td>
</tr>
<tr>
<td></td>
<td>Npalms</td>
<td>0.003</td>
<td>0.001</td>
<td>3.064</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DBH30</td>
<td>0.015</td>
<td>0.007</td>
<td>2.164</td>
<td>0.039</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Litter</td>
<td>-0.002</td>
<td>0.001</td>
<td>-1.631</td>
<td>0.114</td>
<td></td>
</tr>
<tr>
<td>Richness</td>
<td>Intercept</td>
<td>10.036</td>
<td>4.654</td>
<td>2.157</td>
<td>0.04</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>Npalms</td>
<td>-0.002</td>
<td>0.007</td>
<td>-0.39</td>
<td>0.699</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DBH30</td>
<td>-0.001</td>
<td>0.044</td>
<td>-0.264</td>
<td>0.794</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Litter</td>
<td>-0.001</td>
<td>0.008</td>
<td>-0.055</td>
<td>0.956</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intercept</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Abundance</td>
<td>64.141</td>
<td>15.51</td>
<td>4.135</td>
<td>0.001</td>
<td>0.245</td>
<td></td>
</tr>
<tr>
<td>Npalms</td>
<td>-0.036</td>
<td>0.024</td>
<td>-1.502</td>
<td>0.145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBH30</td>
<td>-0.21</td>
<td>0.147</td>
<td>-1.428</td>
<td>0.165</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Litter</td>
<td>-0.039</td>
<td>0.028</td>
<td>-1.389</td>
<td>0.176</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figures

Fig. 1 Relative position of the 30 sampled plots at Reserva Forestal Adolpho Ducke.
Fig. 2 Number of harvestmen species sampled per habitat. Asterisk indicates significative differences.

Fig. 3 Abundance of harvestmen sampled per habitat. Asterisk indicates significative differences.
Fig. 4 Partial regressions of the significant effects detected on species composition (NMDS Axis) of harvestmen. a) Species composition change with the increment of number of palms (P = 0.005), and b) number of trees with diameter at breast high > 30 cm (P = 0.034), and c) species composition was not affected by litter depth (P > 0.1).