Hand2 Inhibits Kidney Specification While Promoting Vein Formation Within the Posterior Mesoderm

Elliot A. Perens¹,², Zayra V. Garavito-Aguilar¹,³, Gina P. Guio-Vega³, Karen T. Peña³, Yocheved L. Schindler¹, and Deborah Yelon¹*

¹Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
²Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
³Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia

*Corresponding author, email: dyelon@ucsd.edu, phone: (858) 534-1822
ABSTRACT

Proper organogenesis depends upon defining the precise dimensions of organ progenitor territories. Kidney progenitors originate within the intermediate mesoderm (IM), but the pathways that set the boundaries of the IM are poorly understood. Here, we show that the bHLH transcription factor Hand2 limits the size of the embryonic kidney by restricting IM dimensions. The IM is expanded in zebrafish hand2 mutants and is diminished when hand2 is overexpressed. Within the posterior mesoderm, hand2 is expressed laterally adjacent to the IM. Venous progenitors arise between these two territories, and hand2 promotes venous development while inhibiting IM formation at this interface. Furthermore, hand2 and the co-expressed zinc-finger transcription factor osr1 have functionally antagonistic influences on kidney development. Together, our data suggest that hand2 functions in opposition to osr1 to balance the formation of kidney and vein progenitors by regulating cell fate decisions at the lateral boundary of the IM.
IMPACT STATEMENT

The Hand2 transcription factor regulates the dimensions of the kidney by controlling cell fate decisions at the interface between organ fields.
INTRODUCTION

Organs arise from precisely defined territories containing progenitor cells with specific developmental potential. Distinct progenitor territories often abut one another, and communication at the interfaces between neighboring territories acts to refine their boundaries (Dahmann et al., 2011). This process delineates the final dimensions of each territory and, subsequently, influences the sizes of the derived organs. Boundary refinement is generally thought to be mediated by interplay between opposing inductive and suppressive factors (Briscoe and Small, 2015). In many cases, however, the identification of and interactions among these factors remain elusive.

Kidney progenitor cells originate from the intermediate mesoderm (IM), a pair of narrow bilateral stripes within the posterior mesoderm, flanked by the lateral plate mesoderm (LPM) that gives rise to vessels and by the paraxial mesoderm that gives rise to bone, cartilage, and skeletal muscle. The mechanisms that determine the dimensions of the stripes of IM are not fully understood. Several conserved transcription factors are expressed in the IM and are required for its development, including Lhx1/Lim1, Pax2, and Osr1/Odd1 (Dressler and Douglass, 1992; James et al., 2006; Krauss et al., 1991; Toyama and Dawid, 1997; Tsang et al., 2000; Wang et al., 2005). Studies in chick have indicated essential roles for the LPM, paraxial mesoderm, and surface ectoderm in regulating the expression of these transcription factors (James and Schultheiss, 2003; Mauch et al., 2000; Obara-Ishihara et al., 1999). Furthermore, TGF-beta signaling acts in a dose-dependent manner to pattern the medial-lateral axis of the posterior mesoderm: for example, low levels of BMP signaling promote IM formation while high levels of BMP
signaling promote LPM formation (Fleming et al., 2013; James and Schultheiss, 2005).

Beyond these insights, the pathways that set the boundaries of the IM and distinguish this territory from its neighbors are largely unknown.

Several lines of evidence have suggested that a carefully regulated refinement process is required to sharpen the boundary between the IM and LPM. In chick, mouse, and *Xenopus*, Osr1 and Lim1 are expressed in both the LPM and IM before becoming restricted to the IM, implying the existence of a mechanism that acts to exclude IM gene expression from the LPM territory (Carroll and Vize, 1999; James et al., 2006; Mugford et al., 2008; Tsang et al., 2000). Additional data have hinted at an antagonistic relationship between the IM and LPM lineages (Gering et al., 2003; Gupta et al., 2006): for example, overexpression of vascular and hematopoietic transcription factors (tal1 and lmo2) induces ectopic vessel and blood specification while inhibiting IM formation (Gering et al., 2003). Along the same lines, zebrafish *osr1* morphants exhibit disrupted pronephron formation together with expanded venous structures (Mudumana et al., 2008). Despite these indications of interconnected IM and LPM development, the network of factors that link these processes has not been fully elucidated.

Here, we establish previously unappreciated roles for the bHLH transcription factor Hand2 in both IM and vessel formation. Prior studies of Hand2 have focused on its functions in other tissues, including the heart, limb, and branchial arches (e.g. (Charité et al., 2000; Fernandez-Teran et al., 2000; Funato et al., 2009; Miller et al., 2003; Srivastava et al., 1997; Yanagisawa et al., 2003; Yelon et al., 2000). Although Hand2 is also expressed in the posterior mesoderm (Angelo et al., 2000; Fernandez-Teran et al., 2000; Srivastava et al., 1997; Thomas et al., 1998; Yelon et al., 2000; Yin et al., 2010), its
influence on patterning this tissue has not been extensively explored. Through both loss-of-function and gain-of-function studies, we find that *hand2* limits the size of the kidney by repressing IM formation while promoting venous progenitor formation. *hand2* is expressed laterally adjacent to the IM, and a set of venous progenitors arise at the interface between the *hand2*-expressing cells and the IM. Ectopic expression of IM markers within the *hand2*-expressing territory in *hand2* mutants suggests that *hand2* establishes the lateral boundary of the IM through direct inhibition of IM fate acquisition. Finally, genetic analysis indicates that *hand2* functions in opposition to *osr1* to control kidney dimensions. Together, our data demonstrate a novel mechanism for defining territory boundaries within the posterior mesoderm: *hand2* represses IM formation to establish its lateral boundary while promoting venous progenitor formation in this region. These important functions of Hand2 help to define the precise dimensions and components of the kidneys and vasculature. Moreover, these findings have implications for understanding the genetic basis of congenital anomalies of the kidney and urinary tract (CAKUT) and for developing new approaches in regenerative medicine.
RESULTS

hand2 limits pronephron dimensions by repressing pronephron formation

Our interest in the role of hand2 during kidney development began with an observation arising from our previously reported microarray analysis of hand2 mutants (Garavito-Aguilar et al., 2010). We compared gene expression profiles at 20 hours post fertilization (hpf) in wild-type embryos and han6 mutants, which contain a deletion that removes the entire coding region of hand2 (Yelon et al., 2000).

Surprisingly, 11 of the 26 transcripts that were increased in han6 relative to wild-type were expressed in the pronephron, the embryonic kidney. (For a full list of differentially expressed genes, see Table S1 in Garavito-Aguilar et al., 2010.) We therefore sought to understand the effect of hand2 function on the pronephron.

The six genes with the most elevated expression in han6 mutants are all expressed in the pronephron tubules. We examined the expression of two of these genes that are expressed throughout the tubules -- atp1a1a.4, which encodes a subunit of the Na+/K+ ATPase (Thisse et al., 2004), and cadherin17 (cdh17) (Horsfield et al., 2002) -- and observed an increase in tubule width in han6 (Figure 1A-C, E-G). A similar increase in width of expression was seen for another gene upregulated in han6 but only expressed in a single tubule segment (Wingert et al., 2007), slc12a3 (Figure 1I-K), which encodes the thiazide-sensitive sodium-chloride cotransporter solute carrier 12a3. Notably, in contrast to its widened expression, the anterior-posterior extent of slc12a3 expression appeared unaltered. Last, by examining expression of lhxl and pax2a, which mark glomerular precursors at 24 hpf (O'Brien et al., 2011), we found that the populations of glomerular
precursors, like the tubules, were expanded in \textit{han}^{65} (Figure 1M-O and Figure 8B,C).

Thus, the elevated gene expression detected by microarray analysis in \textit{han}^{65} mutants corresponded with broadened expression of genes throughout the pronephron.

To determine if this broadened expression was due to an increase in cell number, we next analyzed the structure of the pronephron in more detail. We found that the number of cells seen in cross-section of the tubule was increased in \textit{han}^{65} (Figure 1Q-S).

This increase in cell number was observed at multiple regions along the anterior-posterior axis, suggesting that the entire pronephron is expanded. Concomitant with this increase in the number of cells, the total tubule area in cross-section was increased in \textit{han}^{65} mutants (Figure 1T). Together with the expanded expression of pronephron genes, these findings implicate \textit{hand2} in inhibiting the accumulation of pronephron cells.

Does \textit{hand2} simply prevent excessive expansion of the pronephron or is it potent enough to repress pronephron formation? To differentiate between these possibilities, we examined the effects of \textit{hand2} overexpression on the pronephron. Injection of \textit{hand2} mRNA inhibited pronephron formation, as assessed by \textit{atp1a1a.4} expression (Figure 1D). To bypass any potential effects of overexpression on gastrulation, we also utilized our previously characterized \textit{Tg(hsp70:FLAG-hand2-2A-mCherry)} transgenic line to drive \textit{hand2} expression at the tailbud stage (Schindler et al., 2014). Heat shock-induced overexpression resulted in pronephron defects comparable to those caused by mRNA injection, as assessed by \textit{atp1a1a.4}, \textit{cdh17} and \textit{slc12a3} expression (Figure 1H,L and Figure 3A,B). Furthermore, like tubule gene expression, \textit{lhx1a} and \textit{pax2a} expression in glomerular precursors was dramatically inhibited by \textit{hand2} overexpression (Figure 1P and data not shown), again emphasizing the broad effect of \textit{hand2} function on
pronephron formation. In contrast to these effects of hand2 overexpression on the
pronephron, most other regions of expression of these markers, such as expression of
atp1a1a.4 in mucus-secreting cells and expression of *lhx1a* in spinal neurons, were
unaffected (Figure 1D,P). Thus, the effect of hand2 overexpression seems to reflect its
particular impact on pronephron development, as opposed to a general influence of hand2
on the expression of each of these genes. Of note, however, we did observe a dramatic
reduction in otic vesicle expression of both *atp1a1a.4 and pax2a* (data not shown),
suggesting a shared susceptibility to hand2 overexpression in the otic vesicles and the
pronephron. Taken together, our loss-of-function and gain-of-function studies show that
hand2 is necessary to constrain the size of the pronephron, likely through an ability to
repress pronephron formation.

hand2 limits intermediate mesoderm dimensions by repressing intermediate mesoderm formation

We next sought to determine the origin of the effect of hand2 on the pronephron,
and we hypothesized that the pronephron defects observed in *han*⁶⁵ mutants might reflect
a requirement for hand2 to limit IM dimensions. Indeed, using two established IM
markers, *lhx1a* and *pax2a*, we observed that the width of the IM was expanded in *han*⁶⁵
mutants and *hand2* morphants (Figure 2A,B and data not shown), at stages shortly after
gastrulation (i.e. at the 6, 10 and 12 somite stages). In contrast, there was no substantial
difference in the length of the IM seen in wild-type and *han*⁶⁵ mutant embryos (data not
shown). Furthermore, compared to wild-type embryos, *han*⁶⁵ mutants typically had ~50%
more Pax2a+ IM cells (Figure 2D-F). Thus, *hand2* limits the accumulation of IM cells.
To determine whether hand2 is sufficient to repress IM formation, we examined the effects of hand2 overexpression. Both hand2 mRNA injection and heat shock-induced overexpression of hand2 resulted in loss of IM, as determined by pax2a and lhx1a expression (Figure 2C and data not shown). Taken together with our loss-of-function analyses, these results suggest that hand2 limits the dimensions of the IM by repressing its initial formation.

To define the time window during which hand2 overexpression can inhibit IM formation, we utilized Tg(hsp70:FLAG-hand2-2A-mCherry) embryos to induce hand2 expression at different times after gastrulation (Figure 3). Unlike overexpression at the tailbud, 2 somite, or 6 somite stages (Figure 3A-D), overexpression at the 10 somite stage failed to inhibit pronephron development (Figure 3E). Furthermore, we found progressively less severe defects as heat shock induction was performed at successively later stages between tailbud and 10 somites. For example, while inhibition at the tailbud or 2 somite stages resulted in the loss of the majority of pronephric atp1a1a.4 expression (Figure 3A,B), inhibition at the 6 somite stage resulted in only a mild reduction (Figure 3D). Notably, a common phenotype resulting from overexpression in the later portion of this timeframe was a slight reduction at the anterior boundary of atp1a1a.4 expression (Figure 3D). This finding suggests either that formation of the anterior portion of the pronephron is the most sensitive to a reduction of IM formation or that this anterior portion is the last to be formed. Overall, our analysis suggests that there is a hand2-sensitive phase of IM specification prior to the 10 somite stage.
hand2 is expressed beside the lateral boundary of the intermediate mesoderm

Considering the strong effect of hand2 function on repressing IM formation, we sought to define the location of hand2 expression relative to the IM. Prior studies had demonstrated bilateral hand2 expression in the posterior mesoderm of zebrafish, mouse, chick, and Xenopus embryos (Angelo et al., 2000; Fernandez-Teran et al., 2000; Srivastava et al., 1997; Thomas et al., 1998; Yelon et al., 2000; Yin et al., 2010), but the precise localization of this expression relative to the IM had not been determined. During the hand2-sensitive phase of IM formation, we found hand2 to be expressed in bilateral regions immediately lateral to the IM (Figure 4A,B). At these stages, hand2 was also expressed lateral to multiple markers of blood and vessel progenitors, including etv2, tal1, and gata1 (Figure 4C and data not shown). However, a gap lies between these markers and the hand2-expressing cells, consistent with the IM residing between the lateral hand2-expressing cells and the medial blood and vessel progenitors (Figure 4C,D).

We also found that the relationship between hand2 expression, the IM, and blood and vessel progenitors changed after the completion of the hand2-sensitive phase of IM formation. At approximately the 11 somite stage, a second, lateral population of vessel progenitors arises at the interface between the IM and the hand2-expressing cells (Figure 4F-I). These lateral vessel progenitors are likely to be venous progenitors, based on the results of a prior study that suggested that the medial, earlier-forming vessel progenitors contribute to the dorsal aorta and that the lateral, later-forming vessel progenitors contribute to the primary cardinal vein (Kohli et al., 2013).

This set of results defines the general location of hand2 expression relative to other territories within the posterior mesoderm (Figure 4E,J). However, these
observations do not exclude the possibility of transient overlapping expression at the boundaries of each territory (e.g. overlapping etv2 and pax2a expression). Furthermore, we note that gene expression patterns are not necessarily uniform within each territory (e.g. tal1 and etv2 expression patterns are neither uniform nor equivalent within their territory (Kohli et al., 2013)). Nevertheless, our data suggest that, during the hand2-sensitive phase of IM formation, hand2 may exert its repressive effect on IM formation by constraining the lateral boundary of the IM. Furthermore, our findings suggest the possibility of close interactions between hand2, the IM and the lateral population of venous progenitors.

hand2 promotes lateral venous progenitor development in the posterior mesoderm

The appearance of lateral venous progenitor cells at the interface between the IM and the hand2-expressing cells raised the question of whether hand2 regulates the development of these venous progenitors. To address this possibility, we first assessed the early expression of etv2, tal1, and gata1 in the medial population of vessel and blood progenitors, and we observed no differences between wild-type and han mutant embryos at either the 6 or 10 somite stages (Figure 5 – Figure Supplement 1 and data not shown). In contrast, after the 11 somite stage, expression of both etv2 and tal1 in the lateral venous progenitor population was absent in han mutants (Figure 5A, B, F, G). Two-color fluorescent in situ hybridization confirmed that the only territory of etv2 and tal1 expression in hand2 mutants was medial to the IM marker pax2a (Figure 5D, E, and data not shown). Thus, the formation of the lateral venous progenitors, the appearance of
which coincides with the end of the hand2-responsive phase of IM formation, requires hand2.

To gain insight into whether hand2 directly promotes the formation of vessel progenitors, we assessed the consequences of hand2 overexpression. Overexpression of hand2 resulted in an expansion of both etv2 and tal1 expression in the posterior mesoderm (Figure 5C,H). In contrast, hand2 overexpression resulted in a reduction of gata1 expression (Figure 5K). Thus, in the posterior mesoderm, hand2 overexpression can inhibit the development of some tissues, such as IM and blood, while promoting vessel progenitor formation.

To understand the consequences of the influence of hand2 function on the lateral venous progenitors, we examined the vasculature in han^6 mutants. As noted above, a prior lineage tracing study suggested that the lateral venous progenitors contribute to the posterior cardinal vein (Kohli et al., 2013). Furthermore, this study found that inhibition of etv2 function at the time when these lateral cells arise results in loss of expression of mannose receptor c1a (mrc1a), a marker of the cardinal vein (Kohli et al., 2013).

Similarly, han^6 mutants lack mrc1a and flt4 expression in the posterior cardinal vein, suggesting a defect in venous development (Figure 6A,B,D,E). Using Tg(flk1:ras-mcherry) to label the entire vasculature, we identified the presence of the posterior cardinal vein in han^6 mutants (Figure 6J-L), but found that their choroid venous plexus failed to be properly remodeled (Figure 6M-O). In contrast to these changes in the venous system, flt4 and ephrin-b2a (efnb2a) expression in the dorsal aorta, as well as mrc1a expression in the posterior blood island, appeared grossly unaffected by hand2 loss-of-function (Figure 6B,E,H). Meanwhile, consistent with the ability of hand2 to
promote vessel progenitor formation, \textit{hand2} overexpression increased vascular expression of \textit{mrc1a}, \textit{flt4}, and \textit{efnb2a} (Figure 6C,F,I).

Overall, these studies demonstrate a previously unappreciated role for \textit{hand2} in regulating trunk vasculature development. More specifically, our data indicate that \textit{hand2} is required for the successful execution of certain aspects of venous differentiation, including the expression of characteristic venous markers and the remodeling of the choroid plexus. Combined with prior lineage tracing studies and \textit{etv2} loss-of-function analysis (Kohli et al., 2013), our findings suggest that \textit{hand2} implements these functions by promoting the development of the lateral venous progenitors.

\textit{hand2} \textit{loss-of-function results in increased expression of intermediate mesoderm markers in cells that normally express \textit{hand2}}

The lateral localization of \textit{hand2} expression and the absence of lateral venous progenitor markers when \textit{hand2} function is lost highlighted the possibility that \textit{hand2} impacts the IM at its lateral border. We therefore wanted to determine how the expanded IM in \textit{hand2} mutants relates to the interface between the IM and the \textit{hand2}-expressing cells. Do the extra IM cells seem to emerge at this interface? Do they appear to arise from cells that express \textit{hand2}, or, alternatively, at the expense of \textit{hand2}-expressing cells?

To differentiate among these possibilities, we used two methods to identify the \textit{hand2}-expressing territory in \textit{hand2} loss-of-function embryos. We labeled \textit{hand2}-expressing cells through in situ hybridization in embryos injected with a \textit{hand2} morpholino (Figure 7A,B), and we took advantage of the non-rescuing BAC transgene \textit{Tg(hand2:EGFP)} (Kikuchi et al., 2011) to interrogate \textit{han}6 mutants (Figure 7C,D). In
situ hybridization revealed comparable dimensions of the \textit{hand2} expression territory in wild-type and morphant embryos (Figure 7A,B). More specifically, using the transgene, we observed no significant difference between the numbers of GFP$^+$ cells in the posterior mesoderm of wild-type and \textit{han}65 mutant embryos (Figure 7C-E). Thus, it seems that the expansion of the IM in \textit{han}65 mutants does not come at the expense of the formation of cells that normally express \textit{hand2}.

We next assessed whether the increased number of IM cells in \textit{han}65 mutants could arise at least in part from aberrant IM marker expression in cells that normally express \textit{hand2}. Careful examination of wild-type embryos carrying the Tg(\textit{hand2}:EGFP) transgene revealed that \~6\% of the GFP$^+$ cells in their posterior mesoderm also displayed the IM marker Pax2a (Figure 7C,E). In dramatic contrast, \~60\% of the GFP$^+$ cells in the \textit{han}65 mutant posterior mesoderm were also Pax2a$^+$ (Figure 7D,E). Intriguingly, the GFP$^+$ Pax2a$^+$ cells were typically observed at or near the border where the \textit{hand2}-expressing cells meet the IM (Figure 7C,D). These data suggest that \textit{hand2} limits IM dimensions by constraining the lateral boundary of the IM through repression of IM gene expression within \textit{hand2}-expressing cells.

Functionally antagonistic roles for \textit{hand2} and \textit{osr1} in pronephron development

The expansion of Pax2a expression in the \textit{hand2}-expressing territory in \textit{han}65 mutants suggests that factors that promote IM development are present within \textit{hand2}-expressing cells. We hypothesized that \textit{osr1} could be one of these factors, because of the correspondence between the \textit{hand2} and \textit{osr1} expression patterns and loss-of-function phenotypes. First, \textit{osr1} was previously reported to be expressed in the lateral posterior
mesoderm, adjacent to the IM (Mudumana et al., 2008). Through direct comparison of
hand2 and osr1 expression patterns, we found that the genes are co-expressed in the
lateral posterior mesoderm (Figure 8A). Additionally, prior studies demonstrated that
loss of osr1 function results in phenotypes opposite to those caused by loss of hand2: in
contrast to the expanded pronephron and defective venous vasculature in han⁶ mutants,
osr1 morphants were found to exhibit inhibited pronephron development together with
expansion of venous structures (Mudumana et al., 2008; Tena et al., 2007).

To assess the functional relationship between hand2 and osr1, we investigated
double loss-of-function embryos. Dramatically, removal of hand2 function in the setting
of osr1 loss-of-function largely restored normal pronephron development. This
interaction was most notable in the glomerular precursor population (Figure 8B-E).
While this population was expanded in hand2 mutants, it was absent in embryos injected
with an osr1 morpholino (Figure 8B-D). In hand2 mutants injected with the osr1
morpholino, however, the precursor population appeared comparable to wild-type (Figure
8E). Consistent with prior studies (Mudumana et al., 2008), osr1 morpholino injection
had a less dramatic effect on the pronephron tubule than on the glomerulus (Figure
8D,H). Nevertheless, a comparable interaction between hand2 and osr1 was found in
tubule formation (Figure 8F-I). While han⁶ mutants had wide tubules and many osr1
morphants had disrupted tubules, han⁶ mutants injected with osr1 morpholino displayed
relatively normal tubules.

These data suggest that hand2 and osr1 act in opposing and parallel genetic
pathways to regulate the precise dimensions of the pronephron. More generally, our
findings implicate hand2 within a genetic network that regulates progenitor cell fates at the lateral edge of the IM, at the interface with the hand2- and osr1-expressing territory.
DISCUSSION

Together, our data present a new perspective on how the posterior mesoderm is divided into defined territories that create distinct tissues. Importantly, our work provides the first evidence that \textit{hand2} restricts the size of the kidney and promotes vein development. Specifically, our data indicate that \textit{hand2} limits the specification of pronephric progenitors by restraining the lateral boundary of the IM. Furthermore, at the end of the \textit{hand2}-sensitive phase of IM formation, \textit{hand2} supports the formation of venous progenitors just beyond the lateral edge of the IM, in the same region where it represses IM development. Finally, our data reveal a novel genetic interaction in which the inhibitory function of \textit{hand2} is balanced by the inductive role of \textit{osr1} during the establishment of IM dimensions. These findings represent novel functions of Hand2; although prior studies in mice lacking \textit{Hand2} have examined some posterior structures, such as the limb buds and enteric nervous system (e.g. Charité et al., 2000; Lei and Howard, 2011), the influences of Hand2 on the IM and kidney have not been previously investigated.

Our findings highlight the importance of regulating the refinement of the lateral boundary of the IM. It is intriguing to consider how \textit{hand2}, given its expression in the lateral posterior mesoderm, could influence the restriction of the adjacent IM. Perhaps \textit{hand2} acts cell-autonomously to inhibit IM specification; the ectopic appearance of Pax2a\(^+\) cells within the \textit{hand2}-expressing territory in \textit{hand2} mutants makes this an attractive model. Alternatively, \textit{hand2} could have a non-autonomous influence on IM dimensions, perhaps by regulating the production of a lateralizing signal, the absence of
which would result in the lateral expansion of IM gene expression. Wherever its precise location of action may be, this function of \(\text{hand2}\) -- preventing lateral \(\text{hand2}^+\ \text{osr1}^+\) cells from acquiring more medial characteristics, such as expression of \(\text{pax2a}\) or \(\text{lhx1a}\) -- suggests a possible mechanism for distinguishing IM gene expression from that of neighboring lateral territories, a distinct process required during both \textit{in vivo} (James et al., 2006) and \textit{in vitro} (Takasato et al., 2014) IM development.

Additionally, our data imply a close connection between the specification of the IM and the formation of the lateral venous progenitor population. Are the roles of \(\text{hand2}\) during IM and venous development coupled to each other, or do these represent two independent functions of \(\text{hand2}\)? It is appealing to speculate that \(\text{hand2}\) acts to prevent IM specification within the cells that normally develop into the lateral venous progenitors. Even so, it remains feasible that \(\text{hand2}\) could have completely separable effects on the kidney and vein lineages. Currently, the lineage relationships between the IM, the lateral venous progenitors, and the \(\text{hand2}\)-expressing lateral mesoderm remain undetermined; future work on the generation of appropriate tissue-specific lineage tracing tools will facilitate the resolution of these open questions.

In future studies, it will also be valuable to elucidate the effector genes that act downstream of \(\text{hand2}\) in the posterior mesoderm and to determine whether the same set of effectors mediate its roles during both IM and venous development. It is noteworthy that our findings have demonstrated a difference between the functions of \(\text{hand2}\) during vessel progenitor development in the anterior and posterior mesoderm: while we have previously shown that \(\text{hand2}\) overexpression inhibits the expression of vessel progenitor markers in the anterior mesoderm (Schindler et al., 2014), here we observed expanded
expression of the same markers in the posterior mesoderm of hand2-overexpressing embryos. These distinct responses to hand2 activity in the anterior and posterior mesoderm may reflect regional differences in the implementation of different molecular functions ascribed to Hand2 (Firulli et al., 2005; Funato et al., 2009; Liu et al., 2009; McFadden et al., 2002; Schindler et al., 2014) or in the utilization of different bHLH binding partners. Thus, evaluation of the factors that work together with Hand2 in different embryonic contexts will be crucial for its integration into the genetic regulatory network responsible for IM and vessel specification.

By demonstrating that hand2 functions in opposition to osr1, our data provide the first key step toward incorporating hand2 into the genetic regulatory network that patterns the posterior mesoderm. It is important to note that prior studies have suggested a non-autonomous role for osr1 during IM development (Mudumana et al., 2008). The endoderm is expanded in osr1 morphants, and mutations that disrupt endoderm development abrogate the pronephron defects caused by osr1 loss-of-function (Mudumana et al., 2008; Terashima et al., 2014). In contrast, we suspect that hand2 affects IM formation from its position in the lateral mesoderm, rather than from the endoderm. We observe ectopic Pax2a+ cells emerging within hand2-expressing mesoderm in hand2 mutants; additionally, whereas osr1 morphants have an expansion of the endoderm (Mudumana et al., 2008; Terashima et al., 2014), han65 mutants exhibit normal amounts of endoderm (Wendl et al., 2007; Yelon et al., 2000). Regardless of whether hand2 and osr1 both function within the lateral posterior mesoderm, our data suggest that these two genes control antagonistic and parallel genetic pathways that balance each other's influence in order to regulate the size of the IM.
Overall, our new insights into the genetic regulation of IM specification have the potential to impact our understanding of the origins and treatment of kidney disease. Prior studies have suggested a genetic component to the origins of congenital anomalies of the kidney and urinary tract (CAKUT) (Bulum et al., 2013; Vivante et al., 2014). In some cases of CAKUT, disease-causing mutations have been identified, many of which disrupt genes that influence early kidney development, including mutations in PAX2 and OSR1 (Madariaga et al., 2013; Thomas et al., 2011; Zhang et al., 2011). By implicating hand2 in the control of IM specification, we enrich the gene regulatory network that is relevant to the etiology of CAKUT. In this regard, it is interesting to note that there are case reports of chromosomal duplications containing HAND2 in patients with renal hypoplasia (Otsuka et al., 2005). Furthermore, the identification of genes that control IM specification can inspire new directions in the design of stem cell technologies and regenerative medicine strategies. Alteration of HAND2 function may allow for enhancement of current protocols for generating kidney progenitor cells in vitro (Kumar et al., 2015; Mae et al., 2013; Taguchi et al., 2014; Takasato et al., 2014; Takasato et al., 2015), potentially facilitating the requisite control that will be essential for future deployment in patient applications.
MATERIALS AND METHODS

Zebrafish

We generated embryos by breeding wild-type zebrafish, zebrafish heterozygous for the hand2 mutant allele han^{65} (Yelon et al., 2000), and zebrafish carrying Tg(hand2:EGFP)^{pd24} (Kikuchi et al., 2011), Tg(hsp70:FLAG-hand2-2A-mCherry)^{sd28} (Schindler et al., 2014), Tg(flk1:ras-mcherry)^{s896} (Chi et al., 2008), or Tg(etv2:egfp)^{ci1} (Proulx et al., 2010). For induction of heat shock-regulated expression, embryos were placed at 37°C for 1 hr and then returned to 28°C. Following heat shock, transgenic embryos were identified based on mCherry fluorescence; nontransgenic embryos were analyzed as controls. All heat shocks were performed at tailbud stage unless otherwise indicated.

In embryos older than 20 hpf, han^{65} mutants were identified based on their cardiac phenotype (Yelon et al., 2000). In younger embryos, PCR genotyping of han^{65} mutants was conducted as previously described (Yelon et al., 2000), with the exception of embryos containing Tg(hand2:EGFP)^{pd24}, in which we used primers that amplify the first exon of hand2 (5’- CCTTCGTACAGCCCTGAATAC-3’, 5’- CCTTCGTACAGCCCTGAATAC-3’). This exon is present in the wild-type allele but is absent in both han^{65} homozygotes and the TgBAC(hand2:EGFP)^{pd24} transgene.

Injection

Synthesis and injection of capped hand2 mRNA was performed as described previously (Schindler et al., 2014). To knock down hand2 function, we injected 3-6 ng
of a previously characterized translation-blocking hand2 morpholino at the one-cell stage (Reichenbach et al., 2008). To knock down osr1 function, we used a previously characterized osr1 translation-blocking start site morpholino, osr1 ATG (Tena et al., 2007). 16-23 ng of this morpholino was injected with or without 1.6 ng of p53 morpholino (Robu et al., 2007).

7 In situ hybridization

Standard and fluorescent whole-mount in situ hybridization were performed as previously described (Brend and Holley, 2009; Thomas et al., 2008), using the following probes: atp1a1a.4 (ZDB-GENE-001212-4), cdh17 (ZDB-GENE-030910-3), efnb2a (ZDB-GENE-990415-67), etv2 (etsrp; ZDB-GENE-050622-14), flt4 (ZDB-GENE-980526-326), gata1 (ZDB-GENE-980536-268), hand2 (ZDB-GENE-000511-1), lhxa (lim1; ZDB-GENE-980526-347), mrc1a (ZDB-GENE-090915-4), osr1 (ZDB-GENE-070321-1), pax2a (ZDB-GENE-990415-8), slc12a3 (ZDB-GENE-030131-9505), and tal1 (scl; ZDB-GENE-980526-501). To prepare an osr1 probe, we amplified and subcloned the osr1 cDNA using the primers 5’ – GAGTTTCTACCCCGAGTAACCA – 3’ and 5’ – TTTTCAAAAATAAAGTTTAAGGAATCCA – 3’.

19 Immunofluorescence and cell counting

Whole-mount immunofluorescence was performed as previously described (Cooke et al., 2005), using polyclonal antibodies against Pax2a at 1:100 dilution (Genetex, Irvine, CA, GTX128127) and against GFP at 1:1000 dilution (Life Technologies, Carlsbad, CA, A10262), and the secondary antibodies goat anti-chick
Alexa Fluor 488 (Life Technologies, A11039), goat anti-rabbit Alexa Fluor 594 (Life Technologies, A11012), and goat anti-rabbit Alexa Fluor 647 (Life Technologies, A21245), all at 1:100 dilution. Samples were then placed in SlowFade Gold anti-fade reagent (Life Technologies).

To count Pax2a⁺ or GFP⁺ cells, we flat-mounted and imaged embryos after dissecting away the yolk and the anterior portion of the embryo. We examined a representative 250 μm long region in roughly the middle of the IM on one side of the embryo. This technique allowed us to select contiguous regions that were unaffected by dissection artifacts. Positive cells were determined by examining both three-dimensional reconstructions and individual optical sections. Statistical analysis of data was performed using Microsoft Excel to conduct unpaired t-tests.

Histology

Histological analysis was performed on tissues embedded in Spurr Low-Viscosity embedding mixture. Embryos were fixed in 2% paraformaldehyde and 2.5% glutaraldehyde in 0.1 M sodium phosphate buffer (pH 7.2), post-fixed with 2% osmium tetroxide, dehydrated in an ethanol gradient, infiltrated with a propylene oxide/resin gradient, and then embedded. Samples were oriented as desired and incubated for 24 hours at 60°C for polymerization. 2-4 μm sections were cut using glass blades, collected on standard slides, and stained with 1% toluidine blue.

Transverse sections from 24 hpf embryos were examined at three different anterior-posterior levels along the pronephron, with two sections analyzed per level in each embryo. We processed three embryos per genotype. Cell counting and area
measurements were performed using Zeiss ZEN software. Data variance homogeneity and normal distribution were confirmed using IBM SPSS Statistics 22 software.

Imaging

Bright-field images were captured with a Zeiss Axiocam on a Zeiss Axiozoom microscope and processed using Zeiss AxioVision. Images of histological sections were captured using a Zeiss AxioImager A2 microscope coupled to a Zeiss Axiocam camera. Confocal images were collected by a Leica SP5 confocal laser-scanning microscope and analyzed using Imaris software (Bitplane).

Replicates

All assessments of phenotypes and expression patterns were replicated in at least two independent experiments with comparable results. Embryos were collected from independent crosses, and experimental processing (injection, heat shock, and/or staining) was carried out on independent occasions. Two exceptions to this include data presented in Figure 1Q-T and Figure 8C-E. In each of those cases, multiple embryos were processed, and the n is reported in the associated figure legends.
ACKNOWLEDGEMENTS

We thank members of the Yelon lab, N. Chi, L. Oxburgh, and D. Traver for valuable discussions; I. Drummond, K. Poss, S. Sumanas, J. Torres-Vázquez, and D. Traver for providing reagents; L. Rincón-Camacho with assistance with histology; and H. Knight for assistance with graphics.

COMPETING INTERESTS

All authors declare no competing interests.

AUTHOR CONTRIBUTIONS

EAP: Conception and design, acquisition of data, analysis and interpretation of data, writing the manuscript. ZVGA: Conception and design, acquisition of data, analysis and interpretation of data. GPGV and KTP: Acquisition of data. YLS: Contributed unpublished reagents. DY: Conception and design, analysis and interpretation of data, writing the manuscript.

FUNDING

This work was supported by grants to DY from the National Institutes of Health (NIH) [R01HL069594 and R01HL108599] and from the March of Dimes [1-FY16-257]. EAP was supported by California Institute of Regenerative Medicine Training Grant TG2-01154 and by an A. P. Giannini Foundation Fellowship. ZVGA was supported by the Universidad de los Andes Assistant Professor Fund (FAPA) and by the Vicerrectoría de
1 Investigaciones P14.160422.007/01. KTP was supported by the Colciencias Convocatoria 617-2013-Joven Investigador Fellowship.

2

3
1 FIGURE LEGENDS

2

3 Figure 1. hand2 inhibits pronephron formation.

4 (A-P) Dorsal views, anterior to the left, of pronephron schematics (A, E, I, M), wild-type
5 embryos (B, F, J, N), han^{6} mutant embryos (C, G, K, O), and hand2-overexpressing
6 embryos (D, injected with hand2 mRNA; H, L, P, carrying Tg(hsp70-hand2-2A-
7 mcherry), abbreviated hs:hand2) at 24 hpf. In schematics (A, E, I, M), colored regions
8 correspond to area of pronephron gene expression. In situ hybridization demonstrates
9 that atp1a1a.4 (A-D) and cdh17 (E-H) are expressed throughout the pronephron tubules,
10 slc12a3 (I-L) is expressed in the distal late segments of the pronephron tubules, and lhx1a
11 (M-P) is expressed in the glomerular precursors (arrows, N), as well as overlying spinal
12 neurons (asterisks, N). Compared to wild-type (B, F, J, N), gene expression is expanded
13 in han^{6} mutants (C, G, K, O) and reduced in hand2-overexpressing embryos (D, H, L, P).
14 Of note, injection of a hand2 translation-blocking morpholino caused effects on
15 pronephron formation similar to those seen in han^{6} mutants (data not shown). Scale bars
16 represent 100 μm.
17 (Q, R) Transverse sections through wild-type (Q) and han^{6} mutant (R) pronephron
18 tubules at 24 hpf. Dashed lines outline the tubule and asterisks indicate individual tubule
19 cells.
20 (S, T) Bar graphs indicate the average number of tubule cells per cross-section (S) and
21 the average tubule area per cross-section (T) in wild-type and han^{6} mutant embryos;
22 error bars indicate standard error. Asterisks indicate statistically significant differences
23 compared to wild-type (p<0.0001, Student’s t test; n=18).
Figure 2. *hand2* inhibits IM production.

(A-C) Dorsal views, anterior to the top, of the posterior mesoderm at the 10 somite stage. In situ hybridization depicts normal expression of *lhx1a* in the IM (arrows) of wild-type embryos (A), widened expression in *han*⁶ mutants (B), and reduced expression in *hand2*-overexpressing embryos (C). Expression in the notochord (asterisk) is unaffected by altered *hand2* function. Scale bar represents 100 μm.

(D-E) Pax2a immunofluorescence in the posterior mesoderm of wild-type (D) and *han*⁶ mutant (E) embryos at the 12 somite stage. Dorsal views, anterior to the left, are three-dimensional reconstructions of flat-mounted embryos from which the yolk and anterior tissues have been dissected away. Scale bar represents 100 μm.

(D'-E') Magnification of 250 μm long regions from (D) and (E) used for quantification of the number of Pax2a⁺ cells in wild-type (D') and *han*⁶ mutant (E') embryos. White dots indicate Pax2a⁺ nuclei. Intensity of staining varied from strong (for example, green arrows) to weak (for example, yellow arrows). Scale bar represents 25 μm.

(F) Bar graph indicates the average number of Pax2a⁺ cells in a 250 μm long portion of the IM in wild-type and *han*⁶ mutant embryos; error bars indicate standard error. Asterisk indicates a statistically significant difference compared to wild-type (p<0.0001, Student’s t test; n=13 for wild-type and n=10 for *han*⁶).
Figure 3. Pronephron development is susceptible to hand2 overexpression prior to the 10 somite stage.

(A-E) Dorsal views, anterior to the left, of in situ hybridization for atp1a1a.4 at 24 hpf depict a range of severity of pronephron defects, ranging from absence of the pronephron (A) to unaffected (E). Tg(hsp70:FLAG-hand2-2A-mCherry) embryos were subjected to heat shock at the tailbud, 2 somite, 6 somite, or 10 somite stages, and the consequences on pronephron development were scored at 24 hpf. Percentages indicate the distribution of phenotypes produced by each treatment; the number of embryos examined is in the right-hand column. Heat shock at later stages resulted in more mild loss of atp1a1a.4 expression in the tubule, and heat shock at the 10 somite stage did not disrupt atp1a1a.4 expression in the tubule. Scale bar represents 100 μm.
Figure 4. *hand2* expression in the posterior lateral mesoderm.

(A-D, F-I) Two-color fluorescent in situ hybridization (A, C, F, H) and immunofluorescence (B, D, G, I) label components of the posterior mesoderm in dorsal views, anterior to the left, of three-dimensional reconstructions, as in Figure 2D-E. In embryos containing transgenes in which GFP expression is driven by the regulatory elements of *hand2* (B, G) or *etv2* (D, I), anti-GFP immunofluorescence was used to enhance visualization. *Tg(etv2:egfp)* expression was also observed in the midline neural tube, as previously reported (Proulx et al., 2010). Scale bar represents 100 μm.

(E, J) Schematics depict posterior mesoderm territories, dorsal views, anterior to the left; *hand2*-expressing cells, IM, and medial vessel/blood progenitors are shown at 2-10 somites (E) and at 11-13 somites (J), together with lateral vessel progenitors.

(A-D) *hand2* is expressed lateral to the IM at the 2-10 somite stages. Embryos shown are at the 10 somite stage; similar expression patterns were seen at earlier stages. (A, B) *hand2* is expressed lateral to the IM markers *lhx1a* (A) and *Pax2a* (B). (C) *hand2* is expressed lateral to *tal1*, a marker of blood and vessel progenitors; note the unlabeled gap between expression territories. (D) A marker of vessel progenitors, *Tg(etv2:egfp)*, lies medially adjacent to *Pax2a*.

(F-I) Vessel progenitors arise at the interface between *hand2*-expressing cells and the IM at the 11-13 somite stages. (F, G) *hand2* is expressed lateral to the IM marker *pax2a*.

(H) *hand2* is expressed lateral to a second territory of *tal1* expression; note the presence of lateral *tal1*-expressing cells (arrows) immediately adjacent to *hand2* expression. (I) The IM lies between two territories of *etv2* expression; the more lateral *etv2*-expressing cells (arrows) are lateral to the IM.
Figure 5. *hand2* promotes vessel progenitor development.

(A-C, F-K) In situ hybridization depicts *etv2* (A-C), *tal1* (F-H) and *gata1* (I-K) expression in wild-type (A, F, I), *han*[^6] mutant (B, G, J) and *hand2*-overexpressing (C, H, K) embryos; dorsal views, anterior to the left, at the 12 somite stage. (A, F) *etv2* and *tal1* are expressed in relatively medial and lateral (arrows) territories on each side of the wild-type embryo. In *han*[^6] embryos (B, G), only the medial territory is present. In *hand2*-overexpressing embryos (C, H), expression of both *etv2* and *tal1* is increased, but it is not possible to distinguish whether this represents an increase in the medial or the lateral territories. (I-K) *gata1* expression is equivalent in wild-type (I) and *han*[^6] (J) embryos, but it is decreased in *hand2*-overexpressing embryos (K). Scale bar represents 100 μm.

(D, E) Fluorescent in situ hybridization depicts relationship of *etv2* and *pax2a* expression in wild-type (D, D’) and *hand2* morphant (*hand2* MO) embryos (E, E’); dorsal views, anterior to the left, at the 12 somite stage. Medial and lateral (arrows) territories of *etv2* expression flank *pax2a* in wild-type embryos (D, D’). The lateral territory of expression is absent in *hand2* morphants (E, E’).
Figure 5 – Figure Supplement 1. Presence of medial vessel and blood progenitors is unaffected in han^{−6} mutants.

(A-F) In situ hybridization depicts expression of etv2 (A, B), tal1 (C, D), and gata1 (E, F) in wild-type (A, C, E) and han^{−6} mutant (B, D, F) embryos; dorsal views, anterior to the top, of the posterior mesoderm at the 6 somite stage. Scale bar represents 100 μm.
Figure 6. *hand2* promotes proper vein formation.

(A-I) In situ hybridization depicts expression of *mrc1a* (A-C), *flt4* (D-F) and *efnb2a* (G-I) in wild-type (A, D, G), *han*⁶ mutant (B, E, H) and *hand2*-overexpressing (C, F, I) embryos; lateral views, anterior to the left, at 24 hpf (A-C, G-I) and the 20 somite stage (D-F).

(A-C) *mrc1a* expression in the posterior cardinal vein (blue arrow) was present in wild-type (A), absent in *han*⁶ mutant (B), and increased in *hand2*-overexpressing (C) embryos. Expression in the posterior blood island (red arrowhead) was grossly unaffected.

(D-F) *flt4* expression in the posterior cardinal vein (blue arrow) was present in wild-type (D), absent in *han*⁶ mutant (E), and increased in *hand2*-overexpressing (F) embryos. Expression in the dorsal aorta (red arrow) was grossly unaffected.

(G-I) *efnb2a* expression in the dorsal aorta (red arrow) was present in wild-type (G), grossly unaffected in *han*⁶ mutant (H), and slightly increased in *hand2*-overexpressing (I) embryos.

(J-O) Lateral views of three-dimensional reconstructions of *Tg(flk1:ras-mcherry)* expression in the vasculature of wild-type (J, M) and *han*⁶ mutant (K, N) embryos at 28 hpf (J, K) and 32 hpf (M, N). Pictured region in (J, K) is the area of the trunk boxed in the schematic (L); pictured region in (M, N) is the area of the tail boxed in the schematic (O). Both posterior cardinal vein (blue arrow) and dorsal aorta (red arrow) were present in wild-type (J) and *han*⁶ mutant (K) embryos. In contrast to wild-type (M), the caudal venous plexus (arrowhead) fails to undergo proper remodeling in *han*⁶ mutants (N).

Scale bars represent 100 μm.
Figure 7. Increased presence of Pax2a in hand2-expressing cells of hand2 mutants.

(A-B) In situ hybridization depicts presence of hand2 expression in hand2 morphants; dorsal views, anterior to the left, at the 10 somite stage. There is no evident loss of hand2-expressing cells in hand2 morphants; moreover, hand2 expression levels appear higher in the context of hand2 loss-of-function. Scale bar represents 100 μm.

(C-D) Immunofluorescence for Pax2a and GFP in wild-type (C) and han6 mutant (D) embryos, both carrying Tg(hand2:EGFP); dorsal views, anterior to the left, of three-dimensional reconstructions at the 12 somite stage, as in Figure 4G.

(C'-D'') Magnification of 250 μm long regions from (C) and (D) used for quantification of the numbers of GFP+ and Pax2a+ cells in wild-type and han6 mutant embryos. Yellow dots indicate GFP+ cells, white dots indicate Pax2a+ nuclei, and examples of GFP+ Pax2a+ cells are indicated by white arrows. Intensity of Pax2a+ staining varied from strong (for example, green arrows) to weak (for example, yellow arrows). Scale bars represent 100 μm (C, D) and 25 μm (C'-D'').

(E) Bar graph indicates the average numbers of GFP+ cells and GFP+ Pax2a+ cells in a 250 μm long region in wild-type and han6 mutant embryos; error bars indicate standard error. Asterisk indicates a statistically significant difference compared to wild-type (p<0.0001, Student’s t test; n=13 for wild-type and n=10 for han6).
Figure 8. *hand2* and *osr1* act in opposing, parallel pathways to regulate pronephron
development.

(A-A") Fluorescent in situ hybridization depicts overlap (A) of *hand2* (A') and *osr1* (A")
expression in wild-type embryos; dorsal views, anterior to the left, of three-dimensional
reconstructions at the 6 somite stage.

(B-I) In situ hybridization depicts *pax2a* (B-E) and *atp1a1a.4* (F-I) expression at 24 hpf
in wild-type embryos (B, F), *han* mutant embryos (C, G), *osr1* morphant (*osr1* MO)
embryos (D, H) and *han* mutant embryos injected with *osr1* morpholino (*han* + *osr1*
MO) (E, I); dorsal views, anterior to the left.

(B-E) Compared to wild-type (B), *pax2a* expression in the glomerular and neck
precursors was expanded in 100% of *han* mutants (C, n=11), absent (48%) or reduced
(48%) in *osr1* morphants (D, n=25), and relatively normal in *han* + *osr1* MO embryos
(E, n=11). While the extent of marker expression was generally comparable to wild-type
in the double loss-of-function embryos, the stereotypic patterning of this population was
often somewhat disrupted.

(F-I) Compared to wild-type (F), *atp1a1a.4* expression in the pronephric tubules was
wide in 85% of *han* mutants (G, n=13), while many *osr1* morphants (H, n=133) had
tubules with shortened anterior expression (18%) or tubules with segmental losses (35%),
and 47% of *osr1* morphants had a wild-type appearance. 85% of *han* + *osr1* MO
embryos (I, n=46) resembled wild-type, whereas 11% had a shortened anterior tubule and
4% had segmental losses in the tubules.

Scale bars represent 100 μm.
REFERENCES

1 Angelo, S., Lohr, J., Lee, K.H., Ticho, B.S., Breitbart, R.E., Hill, S., Yost, H.J.,
dHAND during cardiac, branchial arch and lateral mesoderm development. Mech Dev 95,
3 231-237.
4
5 Brend, T., Holley, S.A., 2009. Zebrafish whole mount high-resolution double fluorescent
7
9 embryo patterning. Development 142, 3996-4009.
10
11 Bulum, B., Ozcakar, Z.B., Ustuner, E., Dusunceli, E., Kavaz, A., Duman, D., Walz, K.,
13 anomalies in asymptomatic first-degree relatives of patients with CAKUT. Pediatr
14 Nephrol 28, 2143-2147.
15
17
18 Charité, J., McFadden, D.G., Olson, E.N., 2000. The bHLH transcription factor dHAND
19 controls Sonic hedgehog expression and establishment of the zone of polarizing activity

2 gene causes of congenital anomalies of the kidney and urinary tract (CAKUT) in humans.
3 Pediatr Nephrol 29, 695-704.

5 1) is an essential regulator of heart and urogenital development. Dev Biol 288, 582-594.

6 Wendl, T., Adzic, D., Schoenebeck, J.J., Scholpp, S., Brand, M., Yelon, D., Rohr, K.B.,
7 2007. Early developmental specification of the thyroid gland depends on han-expressing
8 surrounding tissue and on FGF signals. Development 134, 2871-2879.

11 control the positioning and segmentation of the zebrafish pronephros. PLoS Genet 3,
12 1922-1938.

14 Targeted deletion of a branchial arch-specific enhancer reveals a role of dHAND in

16 Yelon, D., Ticho, B., Halpern, M.E., Ruvinsky, I., Ho, R.K., Silver, L.M., Stainier, D.Y.,
17 2000. The bHLH transcription factor hand2 plays parallel roles in zebrafish heart and

<table>
<thead>
<tr>
<th></th>
<th>24 hpf</th>
<th>Absent</th>
<th>Less than 50% present</th>
<th>More than 50% present</th>
<th>Short anterior</th>
<th>Unaffected</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat shock at tailbud</td>
<td></td>
<td>35%</td>
<td>55%</td>
<td>10%</td>
<td>-</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>Heat shock at 2 somites</td>
<td>25%</td>
<td>20%</td>
<td></td>
<td></td>
<td>55%</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>Heat shock at 6 somites</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>50%</td>
<td>50%</td>
<td>20</td>
</tr>
<tr>
<td>Heat shock at 10 somites</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100%</td>
<td>20</td>
</tr>
</tbody>
</table>
FIGURE 4

2-10 somites

A. hand2, lhx1a

B. hand2:gfp, Pax2a

C. hand2, tal1

D. etv2:gfp, Pax2a

11-13 somites

E. hand2-expressing

F. hand2, pax2a

G. hand2:gfp, Pax2a

H. hand2, tal1

I. etv2:gfp, Pax2a

J. vessel

K. IM

L. vessel/blood
<table>
<thead>
<tr>
<th>Gene</th>
<th>Wild-Type (24 hpf)</th>
<th>han<sup>s6</sup> (24 hpf)</th>
<th>hs:hand2 (20 som)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mrc1a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>flt4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>efnb2a</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6

- **A** and **D**: Images showing the expression patterns of mrc1a and flt4 genes at 24 hpf.
- **B** and **E**: Images showing the expression patterns of han^{s6} gene at 24 hpf.
- **C** and **F**: Images showing the expression patterns of hs:hand2 gene at 20 som.

J and **K**: Images showing the expression patterns of flk1:ras-mcherry gene at 28 hpf.

M and **N**: Images showing the expression patterns of flk1:ras-mcherry gene at 32 hpf.

L and **O**: Diagrams illustrating the expression patterns at different stages.