Optimizing for generalization in the decoding of internally generated activity in the hippocampus

Authors: Matthijs A. A. van der Meer¹*, Alyssa A. Carey¹, Youki Tanaka¹

¹Department of Psychological and Brain Sciences, Dartmouth College, USA

*Correspondence should be addressed to MvdM. Current address: Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755. E-mail: mvdm -at- dartmouth -dot- edu.

Running head: Decoding hippocampal sequences

Keywords: encoding, replay, hippocampal sequences, cross-validation, Bayesian

Number of pages: 31
Number of Figures: 8
Number of Tables: 1
Abstract

The decoding of a sensory or motor variable from neural activity benefits from a known ground truth against which decoding performance can be compared. In contrast, the decoding of covert, cognitive neural activity, such as occurs in memory recall or planning, typically cannot be compared to a known ground truth. As a result, it is unclear how decoders of such internally generated activity should be configured in practice. We suggest that if the true code for covert activity is unknown, decoders should be optimized for generalization performance using cross-validation. Using ensemble recording data from hippocampal place cells, we show that this cross-validation approach results in different decoding error, different optimal decoding parameters, and different distributions of error across the decoded variable space. In addition, we show that a minor modification to the commonly used Bayesian decoding procedure, which enables the use of spike density functions, results in substantially lower decoding errors. These results have implications for the interpretation of covert neural activity, and suggest easy-to-implement changes to commonly used procedures across domains, with applications to hippocampal place cells in particular.
Introduction

The decoding of neural activity is a powerful and ubiquitous approach to understanding information processing in the brain. Decoding is typically cast as a mapping from neural data to a sensory or motor variable, such as the identity of a visually presented object or the reaching direction of a motor action; the same idea can be applied to more abstract or even hidden states such as context or past history. By comparing a decoded (“reconstructed”) variable with the actual value, the contributions of features such as spike timing, adaptation, and correlations to decoding accuracy can be quantified (Nirenberg and Latham, 2003; Panzeri et al., 2015; Schneidman, 2016). Based on the nature and accuracy of the decoder output under various conditions, inferences may be drawn about the possible functions of neural populations carrying such signals and the circuitry responsible for generating them (Georgopoulos et al., 1986; Bialek et al., 1991; Pillow et al., 2008). These decoding approaches share the property that when a known stimulus value is available along with neural data, decoding performance can be optimized relative to a known “ground truth” (i.e. the actual stimulus value).

Increasingly so, however, decoding is also applied to brain activity occurring in the absence of any overt stimulus or action (Georgopoulos et al., 1989; Johnson et al., 2009; King and Dehaene, 2014). Such internally generated activity occurs, for instance, during processes such as planning, deliberation, visual imagery and perspective-taking, memory recall and sleep. A well-studied example is provided by studies of hippocampal activity recorded in rodents, which exhibits internally generated sequences of neural activity that appear to depict behavioral trajectories (Skaggs and McNaughton, 1996; Nadasdy et al., 1999; Davidson et al., 2009; Pfeiffer and Foster, 2013). Such “replay” is thought to reflect an off-line consolidation process from a fast-learning, episodic-like short-term memory trace in the hippocampus into a semantic-like neocortical knowledge structure (McClelland et al., 1995; Káli and Dayan, 2004; Girardeau et al., 2009; Carr et al., 2011). In addition, it has become clear that “replay” also plays a role in on-line task performance, and can depict trajectories that are not well explained by consolidation processes, such as those towards a behaviorally relevant goal and never-experienced paths (O’Neill et al., 2006; Jadhav et al., 2012; Dragoi and...
How should we interpret such internally generated activity? The intuition that replay has a clear resemblance to activity observed during active behavior can be formalized by simply applying the same decoder used to decode activity during overt behavior (Tatsuno et al., 2006; Kloosterman, 2012; Shirer et al., 2012). However, in the rodent hippocampus there are also obvious differences between the two types of activity, such as the compressed timescale and different instantaneous population firing rates (Skaggs and McNaughton, 1996; Lee and Wilson, 2002; Buzsáki, 2015). More generally, there is now overwhelming evidence that hippocampal “place cells” are better viewed as encoding many possible stimulus dimensions rather than just place; these may include relatively low-level properties such as running speed, information about objects and events, and complex history- and context-dependence (Huxter et al., 2003; Lin et al., 2005; McKenzie et al., 2014; Allen et al., 2016). Thus, it is unlikely that the mapping between neural activity and encoded location (the “encoding model”) remains the same between overt and covert epochs, raising the possibility of biases in our ability to decode specific stimulus values (such as different locations along a track).

To address the above issues, we provide several practical improvements to commonly used decoding procedures, of particular use for applications to internally generated activity. In acknowledgment of the likely different encoding model in force during overt and covert neural activity, we suggest that decoding performance should be optimized for generalization performance (i.e. to do well on withheld data not used to estimate the parameters of the decoder). We compare optimal decoding parameters and resulting decoding errors for different splits of the data, and show that these not only result in different overall decoding performance, but also in different performance distributions over the stimulus space. Finally, we show that regardless of the type of split used, decoding performance can be improved by relaxing the assumption of integer spike counts used in the common Bayesian decoding procedure. These observations have implications for the interpretation of decoded covert activity, and provide simple practical guidelines for best practice when decoding hippocampal sequences and internally generated brain activity more generally.
Materials and Methods

Overview

Our aim is to describe how the output of decoding hippocampal ensemble activity depends on the configuration of the decoder. In particular, we examine two components: (1) the split between training and testing data, and (2) the parameters associated with the estimation of firing rates and tuning curves (the encoding model). Both are described in the Analysis section. All analyses are performed on multiple single unit data recorded from rats performing a T-maze task, described in the Behavior section. Data acquisition, annotation, and pre-processing steps are described in the Neural data section.

All preprocessing and analysis code is publicly available on our GitHub repository, https://github.com/vandermeelab/papers. Data files are available from our lab server on request by e-mail to the corresponding author.

Neural data

Subjects and overall timeline. Four male Long-Evans rats (Charles River and Harlan Laboratories), weighing 439-501 g at the start of the experiment, were first introduced to the behavioral apparatus (described below; 3-11 days) before being implanted with an electrode array targeting the CA1 area of the dorsal hippocampus (details below). Following recovery (4-9 days) rats were reintroduced to the maze until they ran proficiently (0-3 days), at which point daily recording sessions began. On alternate days, rats were water- or food-restricted. In parallel with the maze task, some rats (R042, R044, R050) were trained on a simple Pavlovian conditioning task in a separate room (data not analyzed).
Behavioral task. The apparatus was an elevated T-maze, constructed from wood, painted matte black with white stripes applied to the left arm (Figure 1) and placed on a metal frame approx. 35 cm in height. The distance from the start of the central stem to the ends of the arms was 272 cm (R042) or 334 cm (R044, R050, R064; these numbers are subject IDs). 6% sucrose (∼0.1 ml) was dispensed upon reaching the end of the left arm, and food (5 pellets of Test Diet 5TUL 45 mg pellets) was dispensed upon reaching the end of the right arm.

Daily recording sessions consisted of (1) a pre-behavior recording epoch, taken as the animal rested on a recording pedestal (terracotta pot lined with towels; 20-30 min), (2) approximately 20 trials on the maze, with an intertrial interval (30-240 s) on the recording pedestal after each trial, and (3) a post-behavior recording epoch (10-20 min). A trial was defined as a run from the starting point at the base of the central stem to one of the reward locations; photobeams at the track ends were used to find pairs of crossings defining the shortest interval between leaving the base and arriving at an end. Only data from runs on the track was analyzed here.

Because rats were food- or water-restricted, they tended to prefer choosing the arm leading to the outcome to which their access was limited. On some sessions, access to a preferred arm was blocked with a movable barrier to ensure sampling of the non-preferred arm (forced choice). Trials on which the animal turned around, or exhibited other disruptive behaviors (climbing on the barrier, extended grooming, etc.) were excluded from analysis.

Electrode arrays and surgery. Subjects were each implanted with a single-bundle microelectrode array targeting the CA1 region of dorsal hippocampus in the right hemisphere (AP -4.0mm, ML +2.5mm). R042 and R044 were each implanted with a 15-tetrode 1-reference array, and R050 and R064 were each implanted with a 16-tetrode 4-reference array. Surgical procedures were as described previously (Malhotra et al., 2015). Briefly, the skull was exposed and a ground screw was placed through the contralateral parietal bone. Arrays were lowered to the surface of the cortex through a craniotomy, and the remaining exposed opening was
Figure 1: Behavioral apparatus. In daily recording sessions, rats ran approximately 20 trials on an elevated T-maze. Trials were free-choice except for a small number of forced trials in which access to one of the arms was prevented by a barrier to ensure that at least 5 trials for both left and right arms were available for each session. Track dimensions were: width 10 cm (A), total maze height 167 cm (H), total maze width 185 cm (W), total path length 334 cm (cyan trajectory, R042 excepted, who had a shorter B segment for a total path length of 285 cm).

Sealed with a silicone polymer (KwikSil). Then, the arrays were anchored to the skull using small screws and acrylic cement. Rats were given a minimum recovery period of four days, during which antibiotics and analgesics were administered, before retraining began. Tetrodes were slowly advanced to the CA1 layer over a period of 4-9 days. The first recording sessions began no sooner than nine days after surgery. All procedures were performed in accordance with the Canadian Council for Animal Care (CCAC) guidelines, and pre-approved by the University of Waterloo Animal Care Committee (protocol 10-06).

Recording methods. Neural activity from all tetrodes and references was recorded on a Neuralynx Digital Lynx SX data acquisition system using HS-36-LED analog buffering headstages tethered to a motorized commutator. Local field potentials, filtered between 1-425 Hz, were continuously sampled at 2 kHz. Spike waveforms, filtered between 600-6000 Hz, were sampled at 32 kHz for 1 ms when the voltage exceeded an experimenter-set threshold (typically 40-50μV) and stored for offline sorting. Acquired signals for all rats
(except R042, whose data was recorded relative to animal ground) were referenced to an electrode located in the corpus callosum, dorsal to the target recording site. A video tracking algorithm recorded the rat’s position based on headstage LEDs picked up by an overhead camera, sampling at 30 Hz. All position data was linearized by mapping each 2-dimensional position sample onto the nearest point of an ideal linearized trajectory on the track, drawn for each session by the experimenter. Position samples further than 25cm from this idealized trajectory were treated as missing values.

Preprocessing and annotation. Signals were preprocessed to exclude intervals with chewing artifacts and high-amplitude noise transients where necessary. All spiking data was initially clustered into putative units automatically (KlustaKwik, K. D. Harris) and then manually checked and sorted (MClust 3.5, A. D. Redish). Highly unstable units and units that fired fewer than 100 spikes in a recording session were excluded. Recording locations were histologically confirmed to lie in the dorsal CA1 cell layer. A total of 2017 units were recorded from 4 rats across 24 sessions (Table 1); 889 of these were units were rated as questionable isolation quality by the experimenter and kept separate for later analysis.

<table>
<thead>
<tr>
<th>Rat ID</th>
<th>Session 1</th>
<th>Session 2</th>
<th>Session 3</th>
<th>Session 4</th>
<th>Session 5</th>
<th>Session 6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>R042</td>
<td>22 (13)</td>
<td>74 (39)</td>
<td>107 (40)</td>
<td>64 (43)</td>
<td>73 (40)</td>
<td>59 (31)</td>
<td>399 (206)</td>
</tr>
<tr>
<td>R044</td>
<td>17 (11)</td>
<td>13 (9)</td>
<td>43 (21)</td>
<td>53 (26)</td>
<td>50 (27)</td>
<td>41 (22)</td>
<td>217 (116)</td>
</tr>
<tr>
<td>R050</td>
<td>72 (42)</td>
<td>94 (40)</td>
<td>72 (28)</td>
<td>113 (44)</td>
<td>128 (36)</td>
<td>112 (46)</td>
<td>591 (236)</td>
</tr>
<tr>
<td>R064</td>
<td>121 (59)</td>
<td>136 (47)</td>
<td>116 (52)</td>
<td>162 (45)</td>
<td>178 (68)</td>
<td>151 (60)</td>
<td>864 (331)</td>
</tr>
</tbody>
</table>

Table 1: Total neural units for each rat across each of their six recording sessions. Numbers in parentheses indicate how many of the numbers listed were units rated as questionable. Sessions listed in italics were excluded due to insufficient number of recorded units.

Inclusion criteria. Recording sessions with at least 20 units firing a minimum of 25 spikes during “run” epochs (used for tuning curve estimation, described below) for both left and right trials separately were included for analysis. This left out five sessions (four from R044, one from R042) resulting in a total of 19 sessions eligible for analysis.
Analysis

Overview. Our main approach is to employ a standard memoryless Bayesian decoder, common to all analyses and described below. We will vary first, the nature of different splits in the data between “training” and “testing”, and second, parameters associated with the estimation of input firing rates (spike density functions) and input tuning curves (the “encoding model”). In all these cases, the output of the decoding procedure is, for each time bin, a probability distribution over (linearized) position, given the observed spiking activity.

Bayesian decoding. We use the canonical Bayesian decoder (Brown et al., 1998; Zhang et al., 1998), specifically the one-step, “memoryless” version with a uniform spatial prior. This procedure (reviewed in detail elsewhere; Johnson et al. 2009; van der Meer et al. 2010; Kloosterman et al. 2014), along with the key parameters varied in this study, is illustrated in Figure 2. The decoded location \(\hat{x} \) for a given time bin we took to be the mode of the posterior (location with the highest probability; maximum a posteriori). A decoding error can then be defined as the distance to the true position \(E_{\text{bins}}(t) = |x(t) - \hat{x}(t)| \). Because \(x \) has the unit of bins, this quantity is converted into a worst-case error in centimeters as follows: \(E_{\text{cm}}(t) = E_{\text{bins}} * b + \frac{b}{2} \), where \(b \) is the bin size in cm (we used 3 cm for the results reported here, and a time bin \(\tau = 25 \text{ ms} \)).

We use this decoding procedure here because it has become the de facto standard in the hippocampal place cell literature (Kloosterman et al., 2014; Silva et al., 2015; Grosmark and Buzsaki, 2016); however, the manipulations in the present study (discussed below) are general and can be straightforwardly applied to other decoding methods such as optimal linear decoding, regression-based methods and general-purpose classifiers such as support vector machines, et cetera (Pereira et al., 2009; Pillow et al., 2011; Deng et al., 2015).

Cross-validation. The data used for the estimation of the encoding model (tuning curves; “training data”) may be the same as the data used for decoding and error estimation (“testing data”), but this need not be the case (Figure 3). We systematically compare different splits between training and testing data, focusing
Figure 2: Schematic of the Bayesian decoding scheme. The overall workflow follows the canonical procedure based on the common assumptions of Poisson-distributed spike counts around mean firing rates given by stable tuning curves, and independence between neurons. Crucial variables in the results reported here are (1) the split in the data between trials used for estimating tuning curves ("encoding spikes") and trials used for decoding ("decoding spikes"; see Figure 3 for a detailed explanation), (2) the width of the Gaussian kernel σ_{TC} used to smooth the tuning curves (the empirically determined mapping from location to firing rate for each recorded neuron), and (3) the width of the Gaussian kernel σ_Q used to obtain the spike density functions used as the input to the decoder.

on three specific cases: same-trial decoding (decode each individual trial based on tuning curves obtained from that same trial; Figure 3A), next-trial decoding (decode each individual trial based on tuning curves from the next trial; Figure 3C) and leave-one-out decoding (decode each trial based on tuning curves from all trials except the one being decoded; Figure 3D). Decoding errors reported are always for a specific split and this will be reported in the text; note that for all splits used here, each trial is decoded separately, using tuning curves obtained from a set of encoding trials specific to the lap being decoded (this is unlike all-to-all
decoding, Figure 3B, in which the same set of encoding trials is used for every decoding lap). Left and right trials were always treated separately, i.e. only left trials are used to decode left trials, and the same for right trials.

Figure 3: Schematic of different splits between data used for estimating the encoding model (tuning curves, “training data”) and data used for evaluating decoding accuracy (“testing data”). Data splits in the top row are “tautological” in that tuning curves are estimated on the same data used for decoding. In contrast, data splits on the bottom row measure generalization performance (cross-validation) in the sense that the decoding data was not included in the data used for estimating the encoding model. Black cells in the matrices shown indicate trials used to estimate the encoding model. Thus, for instance, the left column in C shows that to decode trial 1, tuning curves were estimated from trial 2.

Firing rate estimation. Strictly speaking, Bayesian decoding based on the assumption that firing rates are Poisson-distributed requires integer spike counts for the estimation of $P(s|x)$ (Figure 2). However, this means that there will be effects of binning, which will become more prominent as the time window (bin) size τ becomes smaller. For instance, if bins only contain 0 or 1 spike, then which side of a bin edge a spike falls on can potentially have a large effect. This issue is prominent in many aspects of spike train analysis, and is
typically addressed by convolving the raw spike train to obtain a *spike density function (SDF)*, an estimate of firing rate which varies continuously in time (Cunningham et al., 2009; Kass et al., 2014).

To make the standard Bayesian decoding equations compatible with non-integer spike density functions, we note that the denominator \(n_i!\) does not depend on \(x\) and can therefore be absorbed into a normalization constant \(C\) which guarantees that \(\sum_x P(n_i|x) = 1\) (Eq. 36 in Zhang et al. 1998). For the results presented here, we obtain spike density functions by convolving raw spike trains with a Gaussian kernel with SD \(\sigma_Q\), discretized at a resolution of 25 ms (the \(\tau\) in Figure 2).

A possible side effect of using this procedure on the decoding spikes only (i.e. not on the spikes used to estimate the tuning curves, described below) is that firing rate-stimulus combinations that are inconsistent across the ensemble become more likely, e.g. for every individual location \(x_i\) in space, there is at least one neuron that assigns \(P(x_i|n) = 0\) (such cases result in the white areas in Figure 4; only sessions in which at least 80% of samples could be decoded were included, except when indicated explicitly in the text). This can be avoided by simply convolving all spikes with the same kernel \(\sigma_Q\); here we did not do so in order to show the effects of convolving the decoding spikes independently of the encoding model estimation. Smoothing the tuning curves, as described in the next section, is another effective method of avoiding this issue.

Encoding model estimation. Bayesian decoding requires an estimate of \(P(s|x)\), the probability of observing a firing rate vector \(s\) for a given stimulus value \(x\). As in previous work, we assume firing rates are independent between neurons and Poisson-distributed around some mean rate \(\lambda\); this simplification means that we only need to know the mean firing rate as a function of the stimulus variable, \(\lambda(x)\), for each neuron. These are the *tuning curves*, which taken together across all neurons can be thought of as an *encoding model*, i.e. the mapping from stimulus values to neural activity. We estimate tuning curves non-parametrically from the data by (1) restricting the data to intervals when the animal was running on the track \((\geq 5\text{ cm/s}; \text{encoding spikes in Figure 2})\), (2) linearizing the position data and binning in bins of 3 cm, (3) obtaining a firing rate histogram by dividing spike count by occupancy for all bins, and (4) optionally smoothing the resulting
tuning curve with a Gaussian kernel of standard deviation \(\sigma_{TC} \) (with units in cm).

Results

We sought to determine how different configurations of the commonly used one-step Bayesian decoder (Brown et al., 1998; Zhang et al., 1998) relate to the decoding accuracy of position based on ensembles of hippocampal place cells. In particular, we applied different splits to the data, partitioning it into “training” data from which tuning curves were estimated, and “testing” data from which decoding accuracy was determined (a type of cross-validation). In addition, we varied parameters associated with the estimation of tuning curves and firing rates (\(\sigma_{TC} \) and \(\sigma_Q \) in Figure 2).

Our motivation for exploring different data splits is the question of how internally generated sequences (e.g. “replays”) of neural activity can be decoded in a principled manner. For such sequences, the true mapping from neural activity to stimulus space is generally unknown; after all, there is no true stimulus value to which decoded output can be compared. Under these conditions, decoders should be optimized for generalization performance, i.e. performance on “testing” data not used to “train” the decoder. In statistics and machine learning, such cross-validation is routinely used to prevent overfitting (Hawkins, 2004; Alpaydin, 2014).

Applied to the problem of decoding covert sequences, this concept suggests that we choose the decoder which performs best on input data from trials not included in the estimation of tuning curves. Thus, we use data from withheld trials as a proxy for internally generated sequences, such that we can estimate how well various decoders are likely to perform on actual covert sequences.

Specifically, applied to decoding neural data collected across a number of repeated trials, as is the case here in rats running a T-maze task (Figure 1), a number of different splits between testing and training data are possible, illustrated in Figure 3. A commonly used approach in the hippocampal place cell literature is to
not perform any split at all, i.e. to estimate tuning curves based on the full data set, and use those to decode the full data set (Figure 3B). We refer to this approach as “tautological” because the same data is used for both. It is possible to do this at different levels of granularity, for instance going down to the single trial level by decoding each individual trial based on tuning curves from that trial (Figure 3A), while maintaining the property that the same data is used for tuning curve estimation and decoding.

Overall effects of different decoding configurations on accuracy

We found that the best outright decoding performance (as quantified by the error relative to true location) was obtained using such tautological decoding. “Same-trial” decoding performed best of all data splits tested (Figure 4A; average decoding error 5.42 ± 1.02 cm for the best-performing parameters; standard error across subjects). However, if the goal is to optimize decoding performance on trials not included in the training set, the picture changes. Decoding using the next trial resulted in a decoding error ~4-fold worse than the same-trial decoding (19.19 ± 2.85 cm; Figure 4B). Leave-one-out decoding was intermediate between these two (11.25 ± 1.58 cm; Figure 4C), a pattern that held across a wide range of decoding parameters (see also Figure 5 for specific comparisons).

Several other features of Figure 4A-C are worth noting. First, performing no smoothing at all on either the spike trains or the tuning curves (0/0, the data point on the top left of each panel) results in large decoding error. Previous results manipulating the width of the time window indicated minimum error for a time window in the ~0.5-1s range (Zhang et al., 1998) this is confirmed here by the error minimum at 0.2 or 0.5 s SD smoothing kernels. Surprisingly however, even very minimal temporal smoothing of the spike trains to be decoded (e.g. a kernel with 5 ms SD) can result in substantial improvements in decoding performance compared to no temporal smoothing (up to 2-fold; see Figure 5 for a close-up of this effect). Second, best decoding accuracy almost invariably required some smoothing of the tuning curves, even when the leave-one-out procedure ensured many trials were used for tuning curve estimation. Third, the parameters
Figure 4: Decoding accuracy for different data splits (left: same trial, middle: next trial, right: leave-one-out) and decoder parameters (vertical axis: standard deviation of Gaussian kernel (in s) used to convolve spike trains, horizontal axis: standard deviation of Gaussian kernel used to convolve tuning curves (in 3 cm bins). Pseudocolor shows the mean decoding error (in cm) for different parameter and data split combinations. Note that decoding accuracy for some parameter combinations cannot be estimated if temporal smoothing results in decoding spike counts inconsistent with the encoding model (empty data points; see Methods for details). Results shown were obtained with a decoding time bin size (τ) of 25 ms; only sessions with at least 20 cells for both left and right trials on the T-maze were included, averaging across left and right trials (19 sessions total). The white star indicates the parameter combination resulting in the lowest mean decoding error; this is the value reported here for each data split, along with the standard error over subjects ($n = 4$).

yielding optimal decoding accuracy differed between data splits; note for instance how the dark blue area (corresponding to low decoding error) is shifted towards the top left for Figure 4A compared to Figure 4C. Thus, different data splits interact with decoding parameters to produce overall decoding accuracy.

To show more clearly the data in Figure 4 for selected parameter combinations of interest, we plotted separately the raw decoding error (Figure 5A-C) and decoding error normalized to same-lap decoding within each recording session (Figure 5D). Including units with questionable isolation quality decreased decoding error across all conditions (compare Figure 5A-B; see Methods and Table 1 for unit counts), and we therefore used
the full set of units including questionable units for all other analyses. Regardless of the set of units used, however, Figure 4 illustrates clearly the large improvement in decoding accuracy of very minimal smoothing (e.g. green line, 2 ms, or blue line, 10 ms kernels) compared to no smoothing (red line). Also evident is the performance improvement of the leave-one-out data split over the next-lap data split; this improvement was particularly large for larger smoothing (for which, in turn, overall decoding accuracy was better), for no or minimal smoothing, next-lap and leave-one-out decoding tended not to differ.

![Graphs showing decoding error for different data combinations.](image)

Figure 5: Decoding error for selected parameter and data combinations. Panels A and B show decoding error run on all sessions \((n = 24, \) i.e. without requiring a minimum number of cells to be active) to compare decoding error when only well-isolated units are used (A) or when units of questionable isolation quality are included (B). Panels C and D are replots of the same data as in Figure 4, i.e. for sessions with at least 20 cells that met inclusion criteria \((n = 19; \) see Methods). For panel D, decoding error is normalized on a single-session basis to the same-trial decoding. Errorbars indicate SEM over subjects \((n = 4). \)
Effect of trial numbers on decoding accuracy

Given that leave-one-out decoding performed as well or better than next-trial decoding, we can ask how this effect depends on the number of laps included in the leave-one-out procedure. This can be of practical importance in determining the number of trials of behavioral sampling will be sufficient for decoding during internally generated activity. Leave-one-out and next-trial decoding can be seen as opposite ends of a spectrum along which the number of trials used to estimate tuning curves is systematically varied. Overall, decoding performance increased as more trials were included, with diminishing returns for larger numbers of trials (Figure 6). As expected from the results in the previous sections, these overall performance gains in absolute and relative decoding accuracy depended on the amount of smoothing, with the largest gains for larger smoothing.

Figure 6: Raw decoding error (A) or within-session normalized decoding error (to next-trial decoding error, B) as a function of the number of trials included in the cross-validation. Overall, decoding error tended to decrease as more trials were included, but the magnitude of this effect depended on the degree of smoothing used, with stronger smoothing (associated with lower decoding error) benefiting more from including more trials.

The results up to this point raise an obvious question: why does decoding performance depend on the way the data is split between encoding and decoding (training and testing) sets? There are two major possibilities.
The first one is overfitting, which assumes that estimating encoding models from a single trial includes fitting a certain amount of noise which generalizes poorly to other trials. In this scenario, including more trials would lead to averaging out of some of this noise, improving performance as shown above (Figure 6). However, a further, non-exclusive possibility is that the encoding model (the mapping between position along the track and neural activity) is not constant across trials. To test this idea, we plotted single-trial decoding performance as a function of the “distance” between the encoding and decoding laps (this can be visualized by shifting the matrix in Figure 3C horizontally, away from its shown configuration with a distance of trial).

Figure 7 shows that both raw and relative decoding error (normalized within-session to same-lap decoding) tended to increase with larger distance between the encoding and decoding trial (linear mixed model with subject-specific intercepts; effect of trial distance \(F = 10.13, p = 0.0017 \) for parameters with the smallest effect). This effect is intriguing because it suggests that individual trials are associated with distinguishable ensemble firing patterns, potentially reflecting trial-unique aspects of experience (consistent with results from Mankin et al. 2012; Allen et al. 2012; Ziv et al. 2013). However, it should be noted that pinpointing the source of these changes is challenging, given that aspects of behavior such as average running speed and path stereotypy tend to change over the course of a session, in a manner likely correlated with trial distance (elapsed time) in this experiment. Nevertheless, the idea that a given covert sequence may be best decoded by an encoding model associated with a specific trial holds much promise for future work.

Decoding accuracy for different locations

The overall decoding error measure examined so far averages across different stimulus (location) values. However, it is possible that different data splits and decoding parameters differentially affect decoding accuracy for specific locations. Testing whether any such nonuniformity exists in the data is particularly important when making comparisons between decoding covert variables across different stimulus ranges, such as different parts of a track. To test if this occurs, we computed the decoding error as a function of location on the
Figure 7: Decoding error as a function of the distance (in number of trials) for single-trials decoding. A trial distance of 0 means that the same trial is used for encoding (estimating tuning curves) and decoding; a trial distance of +1 means that the next trial is used for encoding, and so on. Raw decoding error (A) and decoding error normalized within sessions to same-trial decoding error (B) tended to increase with larger trial distances. C and D show the same data but for absolute distance, i.e. previous and next-trial decoding are both distance 1. In order to have sufficient numbers of trial pairs to perform this analysis, trial pairs on which at least 20% of samples could be decoded were included (unlike the 80% threshold used for all other results; see Methods).

Apart from the overall difference in raw decoding error across data splits, there were clear differences in how error was distributed across locations: for next-trial and leave-one-out decoding, error tended to increase at the start and end of the track. In contrast, for same-trial decoding, this effect was not apparent at the start of the track. Smaller differences between the same-trial and leave-one-out were also apparent, such as an increase in decoding error around the choice point.

Next, we plotted the confusion matrix of actual and decoded locations for the different data splits (Figure 8C). Apart from the overall difference in decoding accuracy, visible as the width of the diagonal, distortions...
are visible for the leave-one-out case in particular. The point indicated by the white arrow shows relatively poor decoding at the choice point of the T-maze, an effect not apparent for the other data splits.

Figure 8: Average decoding error, by location along the track, for the best-performing decoding parameters (starred in Figure 4). Column layout is as in Figure 4), with same-trial decoding on the left, next-trial in the center, and leave-one-out on the right. **A** shows the raw decoding error, **B** shows within-session Z-scored (across space) error. Note that these distributions are different; for instance, the next-trial and leave-one-out distributions show increases in error at the start and end of the track not seen in the same-trial distribution. **C:** confusion matrices for actual and decoded position, averaged across sessions.
Discussion

This study contributes two advances to the methodology for decoding internally generated neural activity. First, we show that using different data splits for the estimation of the encoding model (tuning curves) and the decoding of hippocampal place cell activity affects decoding performance. Specifically, although same-trial decoding was the clear winner in terms of absolute decoding error, single-trial decoding generalizes poorly, leading to large decoding errors when applied to trials other than the one used to obtain tuning curves. Best generalization performance is obtained with leave-one-out cross-validation. Importantly, these different data splits did not affect decoding performance uniformly across different positions. The second contribution of this study is that for all data splits, decoding error can be substantially reduced by relatively minimal smoothing.

Both these contributions help address the question of how we should decode internally generated, covert activity such as occurs in hippocampal “replay” during rest and offline states. The analyses presented here were performed on data from rats running on a T-maze, rather than on covert activity directly. However, the crucial conceptual connection between these two is the following: because the true mapping from neural activity to locations we should apply during such internally generated activity is typically unknown (see the section below for further discussion), this mapping should be optimized for generalization performance. Operationally, we mimic the decoding of such covert sequences by pretending that we do not know the true encoding model for specific trials on the track (by leaving out these trials in our analysis), essentially treating them as covert sequences – but with the advantage that in this case, we can go back and evaluate decoding performance.

To provide a specific example of how insights obtained from this procedure can be applied to the interpretation of decoding internally generated activity: suppose we used such decoded locations to detect sequences depicting coherent trajectories along the track. After tallying up the number of detected sequences, we may find that these “replays” preferentially included the decision point, rather than the ends of the track. We may
be tempted to report this as a finding of interest, perhaps with an interpretation emphasizing how replay of choices has been proposed to be useful from a reinforcement learning point of view. However, the increases in decoding error at both ends of the track (Figure 8C) should make it clear that such a bias is a straightforward consequence from the cross-validated decoding error. Note that if we had used same-trial decoding error instead (Figure 8A), there would not be any indication of a bias favoring the middle of the T-maze.

Similar to the above example, it is common to use decoding analyses to support a comparison between different experimental conditions or spatially distinct areas on the track, such as the left and right arms of a T-maze (Gupta et al., 2010; Bendor and Wilson, 2012; Ólafsdóttir et al., 2015). In such comparisons, it is crucial to ensure that any differences in decoded trajectory counts cannot be attributed to intrinsic differences in ability to decode such sequences (e.g. as a result of different distributions of firing fields across locations, firing rates, etc). A common way to control for this is to compare decoding accuracy on the conditions to be compared; our results show that such measures can differ substantially when based on tautological or cross-validated decoding. For the purposes of decoding internally generated activity, optimizing for and reporting generalization error is the most conservative approach; specific, practical recommendations follow in the Recommendations section below.

We found that generalization error depends on the number of trials used to estimate the encoding model, with trial numbers up to the 10 tested generally resulting in lower error. The magnitude of this improvement depended on the smoothing parameters used for the encoding model, being largest for significant smoothing (where overall decoding error is also lowest) but diminishing for smaller smoothing amounts. Given the benefits of using more trials, it is useful to note that for the purposes of obtaining a cross-validation error measured against the known stimulus value, location in this case, it is necessary to withhold each trial in turn, i.e. to split the data in training and testing sets. However, when decoding covert activity, the full set of trials can be used as “testing” data, since this decoder will not be used on the same data used to “train” it. Note that this implies that as the number of trials used for cross-validation becomes larger, the difference with all-to-all decoding becomes proportionally smaller. Thus, the importance of reporting cross-validated
error is especially key when smaller numbers of encoding trials are used.

It is not necessarily the case that using more trials to obtain tuning curves is always better, however. When using tuning curves from single trials, decoding error increased when using trials that occurred further apart in time (Figure 7, suggesting a certain amount of trial-unique content. If the contribution of trial-unique features to internally generated sequences is large (Takahashi, 2015), then averaging across many trials to obtain tuning curves may not be the best approach.

Finally, beyond the comparison of different data splits discussed above, we show that regardless of split, decoding error can be reduced substantially by decoding spike density functions (SDFs) rather than raw spike counts. This modification can be straightforwardly accommodated in commonly used Bayesian decoding procedures (Zhang et al., 1998). Remarkably, decoding performance improves even when estimating SDFs with very narrow kernels (e.g. with a standard deviation of 2 or 5 ms). This is particularly important for applications in decoding covert activity, which in the case of hippocampal place cells is thought to be temporally compressed relative to behavioral experience (Nadasdy et al., 1999; Lee and Wilson, 2002; Dragoi and Buzsáki, 2006; Buzsáki, 2015). Although a number of studies have examined the effects of the size of the time window on decoding accuracy (τ; e.g. Zhang et al. 1998), this is different from our spike density function (SDF) estimation approach: the Gaussian kernel width used in SDF estimation can be manipulated independently from the window size (Cunningham et al., 2009). Thus, for a given window size, such as the 25 ms used here, a variable amount of smoothing can be applied; as we show, this can be exploited to obtain significant improvements in decoding accuracy even with very minimal amounts of smoothing (e.g. 2-5 ms).

Limitations

Our suggestion that decoders intended for covert neural activity should be optimized for cross-validated (generalization) performance is based on the assumption that the “true”, correct decoder for such activity
is unknown. Clearly, the approach taken here cannot itself determine the true mapping from covert neural activity to stimulus space. Demonstrating the nature of this mapping is a challenging problem, which may require grounding in experimental observations. Two promising directions may include (1) obtaining access to a brain-internal decoder, such as a downstream projection target, making it possible to determine what aspects of presynaptic activity are distinguished at a next processing stage; and (2) applying experimental manipulations contingent on decoded content, with any systematic effects of such manipulations suggesting the decoder captures something relevant. A different approach is to construct generative models in an attempt to reproduce experimentally observed activity (Johnson et al., 2008). In the limit of a perfect match between the model output and the experimentally observed data, then the optimal decoder can be determined from what is now a known ground truth (the generative model).

A more practical limitation of this study is that although encoding model parameters can be optimized for decoding error when the true location is known, it is unclear how the parameters obtained in this way should be applied to decoding covert activity. Estimates of the temporal compression in internally generated vs. overt activity range from 7-20x (Lee and Wilson, 2002; Davidson et al., 2009; Buzsáki, 2015), thus a practical starting point would be to simply reduce the σ_Q found to be optimal for decoding overt behavior by a factor in that range. For the data set used here this would suggest a value of $\sigma_Q = 5$ ms to be a conservative estimate. Future work could provide a more principled estimate of this parameter by, for instance, using generative models as outlined above.

Similarly, our current estimation method for tuning curves uses a relatively ad hoc approach of non-parametrically obtaining firing rates from the data and then smoothing. Other work has used parametric approaches such as fitting Gaussians or Zernike polynomials (Barbieri et al., 2002); such methods are completely compatible with the approach we take here. Our goal in this study was not to determine which method for tuning curve estimation works best; rather, the main purpose of not sticking with the raw tuning curves here was to prevent inconsistent combinations of spike counts. Looking forward, however, there are clearly opportunities for improving the estimation of tuning curves, such as propagating uncertainty about estimated firing
rates throughout the decoding procedure, and/or correcting for the blurring effects of theta phase precession (Lisman and Redish, 2009; Zheng et al., 2016).

Finally, the results provided here are based on one specific data set. However, we emphasize that the specific optimal parameters etc. found here are not meant to be imported verbatim to analysis of other data sets for which they may or may not work well; if this was the purpose of the study it would indeed be important to test how consistent the inferred optima are. Rather, these results illustrate the importance of choosing parameters and data splits in a principled manner, and suggests specific steps that can be applied to other data sets to find parameters appropriate for that data.

More generally, although we used hippocampal place cell data from rodents, the ideas developed here can also be applied to other systems in which covert activity can be meaningfully decoded. In rodents, these include the head direction system (Peyrache et al., 2015), and areas involved in the processing of decision variables such as orbitofrontal cortex and ventral striatum (Stott and Redish, 2014). Non-human primate studies prominently explored the generation of motor activity related to upcoming reaching movements (Wu et al., 2006; Yu et al., 2009), and ensemble recording and analysis methods are becoming increasingly common in studies of decision making (Rich and Wallis, 2016). In human subjects, MEG studies have started to explore the fast dynamics of thought (King and Dehaene, 2014; Kurth-Nelson et al., 2016), and MVPA has revealed structure in internally generated activity in a wide range of domains (Reddy et al., 2010; Brown et al., 2016). The present study suggests that the analysis of internally generated sequences of hippocampal activity in rodents can interact productively with statistical approaches developed across domains.
Summary: three practical guidelines for the decoding and interpretation of internally generated neural activity

The use of cross-validation for decoding is commonplace in human neuroimaging studies (Pereira et al., 2009; Shirer et al., 2012; Varoquaux et al., 2016). Several studies performing position decoding on rodent hippocampus data have used a split between training and testing data (e.g. Zhang et al. 1998; Davidson et al. 2009; Agarwal et al. 2014), but this practice has not been consistently applied in this field. Moreover, the motivation for reporting decoding errors based on cross-validation, and its particular importance for the interpretation of internally generated activity, is typically not made explicit. For the decoding of hippocampal place cell data for this purpose, we suggest the following:

- Report cross-validated, not tautological, decoding error. This is good practice in general, but particularly crucial when using decoding accuracy to reveal possible bias in the ability to decode different conditions/trajectories.

- Cross-validated decoding error depends on the number of trials used to estimate tuning curves, so ensure that a similar number of trials is used for different conditions being compared.

- Even very mild smoothing of the spike trains to be decoded, such as a 5 ms Gaussian kernel for spike density functions, and a 3 cm kernel for tuning curves) can substantially improve decoding performance.
Acknowledgments

This work was supported by NWO, HFSP, and the Templeton Foundation (MvdM). We are grateful to Loren Frank, Margaret Carr, and Caleb Kemere for sharing the original electrode design upon which our arrays were based. We thank Nancy Gibson, Jean Flanagan, and Martin Ryan for assistance with animal care, Harmen VanderHeide, Jacek Szubra, Andrew Dubé, and Zhenwhen Zhang for technical assistance, and Min-Ching Kuo for assistance with surgery. Elyot Grant and Alireza Soltani provided helpful comments on an earlier version of the manuscript.

Author contributions: MvdM designed and supervised research. AAC performed experiments, preprocessed and annotated the data. AAC, YT and MvdM wrote analysis code. MvdM analyzed the data. MvdM wrote the manuscript with input from AAC and YT.

References

