KAT: A K-mer Analysis Toolkit to quality control NGS datasets and genome assemblies

Daniel Mapleson¹, Gonzalo Garcia Accinelli¹, George Kettleborough¹, Jonathan Wright¹, and Bernardo J. Clavijo¹∗

¹Earlham Institute, Norwich Research Park, UK.

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT

Motivation: De novo assembly of whole genome shotgun (WGS) next-generation sequencing (NGS) data benefits from high-quality input with high coverage. However, in practice, determining the quality and quantity of useful reads quickly and in a reference-free manner is not trivial. Gaining a better understanding of the WGS data, and how that data is utilised by assemblers, provides useful insights that can inform the assembly process and result in better assemblies.

Results: We present the K-mer Analysis Toolkit (KAT): a multi-purpose software toolkit for reference-free quality control (QC) of WGS reads and de novo genome assemblies, primarily via their k-mer frequencies and GC composition. KAT enables users to assess levels of errors, bias and contamination at various stages of the assembly process. In this paper we highlight KAT’s ability to provide valuable insights into assembly composition and quality of genome assemblies through pairwise comparison of k-mers present in both input reads and the assemblies.

Availability: KAT is available under the GPLv3 license at: https://github.com/TGAC/KAT.

Contact: bernardo.clavijo@earlham.ac.uk

Supplementary Information: Supplementary Information (SI) is available at Bioinformatics online. In addition, the software documentation is available online at: http://kat.readthedocs.io/en/latest/.

1 INTRODUCTION

Rapid analysis of high-throughput whole genome shotgun (WGS) datasets is challenging due to their large size (Metzker, 2010), with genome size and complexity creating additional challenges (Schatz et al., 2012). Reference-free approaches for analysing WGS data typically involve examining base calling quality, read length, GC content (Yang et al., 2013), and exploring k-mer (words of size k) spectra (Chot et al., 2009; Lo and Chain, 2014).

K-mer spectra reveal information not only about the data quality (level of errors, sequencing biases, completeness of sequencing coverage and potential contamination) but also of genomic complexity (size, karyotype, levels of heterozygosity and repeat content) (Simpson, 2014). Additional information can be extracted through pairwise comparisons of WGS datasets (Anvar et al., 2014), which can identify problematic samples by highlighting differences between spectra.

KAT, the K-mer Analysis Toolkit, is a suite of tools for rapidly counting, analysing and comparing spectra for k-mers of arbitrary length directly from sequence data (see SI 2 for a comparison of k-mer tools).

2 THE K-MER ANALYSIS TOOLKIT

KAT is a C++11 application containing multiple tools, each of which exploits multi-core machines via multi-threading where possible. Core functionality is contained in a library designed to promote rapid development of new tools. Runtime and memory requirements depend on input data size, error and bias levels, and properties of the biological sample but as a rule of thumb, machines capable of de novo assembly of a dataset will be sufficient to run KAT on the dataset (see SI 3 for details). K-mer counting in KAT is performed by an integrated and modified version of Jellyfish2 (Marçais and Kingsford, 2011), which supports large k values and is among the fastest k-mer counters available (Zhang et al., 2014).

2.1 Assembly validation by comparison of read spectrum and assembly copy number

The KAT comp tool generates a matrix, with a sequence set’s k-mer frequency on one axis, and another’s set frequency on the other, with cells holding distinct k-mers counts at the given frequencies. When comparing reads against an assembly, KAT highlights properties of assembly composition and quality. If represented in a stacked histogram, read k-mer spectrum is split by copy number in the assembly (see SI 4 for a primer on how to interpret KAT’s stacked histograms). In addition, KAT provides the sect tool necessary to study specific assembled sequences and track the k-mer coverage across both the read and the assembly spectra. This can help identify assembly artefacts such as collapsing or expanding events, or detect repeat regions. Figure 1 shows plots relating to two Fraxinus excelsior assemblies created from the same dataset using the sect tool. The plots highlight different strategies taken by the assembler, in (a) and (c) we see some homoyzogous content being duplicated, and in (b) and (d) some heterozygous content eliminated.

2.2 Other KAT tools

KAT also includes the hist tool for computing spectrum from a single sequence set, the gcp tool to analyse gc content against k-mer frequency. The filter tool can be used to isolate sequences from...
Fig. 1: (a) and (b) show two different assemblies of a heterozygous *Fraxinus excelsior* genome http://ftp-oadb.tsl.ac.uk/fraxinus_excelsior represented as read k-mer frequency vs assembly copy number stacked histograms. Black represents content absent from the assembly, red content that occurs once, purple twice, etc. The k-mer spectra for both show an error distribution component under 25X, a heterozygous k-mer component around 50X and a homozygous k-mer component around 100X. The assembly represented by (a) contains most (but not all) the heterozygous content, and introduces some duplications on homozygous content. The assembly in (b), on the other hand is a more “collapsed” assembly, by including mostly a single copy of the homozygous content and discarding more of the heterozygous content. (c) and (d) show k-mer coverage plots across a 400 bp region of the same *Fraxinus excelsior* assembled scaffold 020082 for the assemblies used in (a) and (b) respectively. (c) shows an extra copy on the assembly (blue line) introduced by poor resolution of the heterozygous content, while (d) shows the correct solution.

Acknowledgements

Thanks to David Swarbreck and Federica Di Palma for their support and all KAT users for their valuable feedback. This research was supported in part by the NBIP Computing infrastructure for Science (CiS) group.

Funding: This work was strategically funded by the BBSRC, Institute Strategic Programme Grant BB/J004669/1.