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 2 

Abstract  23 

 24 

As a common neuroscientific observation, the more a body part is used, the less variable the 25 

corresponding computations become. We here report a more complicated scenario concerning 26 

the fingertips of smartphone users. We sorted 21-days histories of touchscreen use of 57 27 

volunteers into social and non-social categories. Sensorimotor variability was measured in a 28 

laboratory setting by simple button depressions and scalp electrodes (electroencephalogram, 29 

EEG). The ms range trial-to-trial variability in button depression was directly proportional to 30 

the number of social touches and inversely proportional to non-social touches. Variability of 31 

the early tactile somatosensory potentials was also proportional to the number of social touches, 32 

but not to non-social touches. The number of Apps and the speed of touchscreen use also 33 

reflected this variability. We conclude that smartphone use affects elementary computations 34 

even in tasks not involving a phone and suggest that social activities uniquely reconfigure the 35 

thumb to touchscreen use.  36 

 37 

 38 

 39 
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 3 

Introduction  41 

 42 

Smartphones enable a remarkably broad range of activities. From the perspective of higher 43 

cognition, smartphone behavior engages complex computations for decision-making, language, 44 

and social interactions. From the perspective of lower-level sensorimotor control, the thumb 45 

and the fingertips are repeatedly applied on the touchscreen to essentially either tap or swipe. 46 

The observation that even toddlers can easily operate a touchscreen underscores the simplicity 47 

of its sensorimotor control (1). According to a series of experiments, a repeated use of the hand 48 

in either skillful or simple actions enhances the corresponding representation in the 49 

sensorimotor cortex (2–6). Sensorimotor alterations have been observed in trained laboratory 50 

monkeys, athletes, Braille readers, and concert string instrument players (3, 5, 7–9). A 51 

prominent notion underlying these observations is that the sensorimotor cortex keeps track of 52 

the amount of activity generated by the corresponding body part but the exact nature of this 53 

tracking is unclear. For instance, in terms of touchscreen use, the cortex may keep track of the 54 

number, frequency, and/or behavioral context of touchscreen actions.     55 

In real-world observations, the role of the behavioral context in use-dependent plasticity 56 

is difficult to establish, partly because of a poor quantification of human actions. For instance, 57 

it is common to assess the extent of deliberate practice in elite musicians by using 58 

questionnaires (6, 10, 11). Such qualitative approaches do not provide a measure of the amount 59 

of activity nor do they capture the activity context. Under well-controlled laboratory conditions, 60 

the precise extent of plasticity depends on whether the sensory information presented at the 61 

fingertip is used towards a behavioral task or not (4). In general, the cortical plasticity can be 62 

modulated by artificially stimulating neuromodulators, such as dopamine or serotonin, that are 63 

naturally released according to the behavioral relevance (12). Social behavior strongly engages 64 

such neuromodulators and the touchscreen smartphone is prominently used towards social 65 

activities (13–15). Therefore, the use-dependent configuration of fingertips in touchscreen users 66 
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might not be a simple function of sensorimotor activity (16). In particular, touchscreen touches 67 

used towards social activities may be distinctly weighted towards use-dependent plasticity of 68 

the sensorimotor cortex. Social activities are well compartmentalized within specific Apps, 69 

allowing us to quantitatively address use-dependent plasticity in distinct behavioral contexts.    70 

In this report, we focused on the elementary property of neuronal variability, or noise, 71 

in the sensorimotor system. Substantial theoretical and empirical support exists for the notion 72 

that an increased use of a body part reduces the sensorimotor noise (17–21). According to one 73 

prominent theory, the brain actively learns to suppress motor variability as if to eliminate 74 

unwanted noise, albeit a different theory has been put forward on how the brain may exploit the 75 

inherent noise towards learning (18, 22). Sensorimotor variability of the fingertips is diminished 76 

with musical practice, by typing on the keyboard, or by deliberately practicing laboratory-77 

designed tasks (18, 23–25). Therefore, a clear-cut prediction would be that the sensorimotor 78 

variability of the fingertips is diminished with increased touchscreen use, irrespective of the 79 

actions being social or non-social. Alternatively, the complexity, neuromodulation, and the 80 

overall significance of social activities may distinctly shape the sensorimotor variability.   81 

 To address these possibilities, we performed a multiple regression analysis to assess 82 

the relationship between (a) Social App usage in the real world and sensorimotor variability 83 

measured in the laboratory, and (b) Non-social App use and sensorimotor variability measured 84 

in the laboratory. We also examined other variables that were likely to influence sensorimotor 85 

variability. To alleviate the effect of development or aging on our measurements, we restricted 86 

the analysis to a young adult population (26). Gender-associated differences exist in 87 

sensorimotor processing from the fingertips and in the performance variability of a simple task 88 

(27, 28). Therefore, we included a dummy variable representing the gender of participants in 89 

the regression analysis. Since an accurate control of motor timing is important for rapid actions, 90 

fast touchscreen operators may develop a more precise sensorimotor system (29). Therefore, a 91 

typical rate of touchscreen touches was added as an explanatory variable. Finally, practicing 92 
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motor skills in various contexts leads to better performance in a previously not experienced 93 

context (30). Since each App on the phone is associated with a distinct context, we quantified 94 

the number of Apps in use as an explanatory variable. In summary, type of touchscreen activity 95 

(social or non-social), the gender, a typical rate of touchscreen activity, and the number of Apps 96 

may all impact sensorimotor computations measured in the laboratory. Incorporating these 97 

factors in a single regression model allowed us to address if and how they are separately 98 

weighing in on the sensorimotor variability.   99 

 100 

 101 

  102 
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Results 103 

 104 

Basic features of touchscreen use   105 

 106 

We quantified touchscreen use for a period of 21 d in a young adult population using a custom-107 

designed software operating in the background to record every touchscreen event and the App 108 

targeted by the event. Social activity generated on the touchscreen was sorted based on the App 109 

in use. We considered Apps that primarily enabled the communication of personal messages or 110 

opinions to a circle of friends or acquaintances as “Social”, and Apps that did not fulfill these 111 

functions as “Non-social” (for a sample of Social and Non-social Apps in the database see 112 

Supplementary List 1). The usage statistics were as follows: the volunteers touched the screen 113 

from 1540.3 (20th percentile) to 5562.3 (80th percentile) times per day, and generated between 114 

429.1 (20th percentile) and 2486.9 (80th percentile) touches per day on the Social Apps. 115 

Importantly, the number of social touches was only partly correlated with the number of non-116 

social touches [variables Log10 normalized, R2 = 0.29, f (1,55) = 22, p = 1.9  10-6, robust linear 117 

regression]. Furthermore, volunteers ranked the fingers used according to their preference. 118 

Confirming previous findings for smartphone usage, the thumb was ranked by 73% of the users 119 

as most preferred on the touchscreen; 16% preferred the index finger; and 10% preferentially 120 

used both the thumb and the index finger (16, 31). Remarkably, only one user preferred their 121 

middle finger to all the other fingers. 122 

 123 

Motor variability of the thumb, but not of the middle finger, is associated with touchscreen 124 

use 125 

 126 

At the end of the touchscreen recording period, the volunteers performed a simple tactile 127 

reaction task in the laboratory where the reaction involved micro switch press-down and 128 

release-up actions (Figure 1a,b). In theory, the time taken to trigger the press-down action 129 
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(reaction time) reflects the sensory decision processes, and the time taken to complete the motor 130 

act, from pressing down to releasing upwards (movement time), reflects the lower cognitive 131 

levels of sensorimotor execution (32–35). The trial-to-trial variability was parametrized using 132 

ex-Gaussian fits. Specifically, we estimated the variability of Gaussian curve region lacking 133 

very slow actions driven by attention lapses (36, 37). In agreement with the notion that the 134 

reaction and movement times reflect distinct neuronal computations, the corresponding 135 

variabilities were unrelated to each other [R2 = 0.02, f (1,53) = 1.1, p = 0.299, robust linear 136 

regression]. Since we were interested in the low-level sensorimotor variability, we focused on 137 

the movement time.  138 

In our multiple linear regression analysis of movement time variability, we treated the 139 

number of daily touches on the Social, Non-social, and Uncategorized Apps (all Log10-140 

normalized), gender (dummy variable, female = 1), typical rate of touchscreen touches, and the 141 

number of Apps used during the recording period, as explanatory variables. First, let us 142 

elaborate on the thumb use analysis data (the thumb was most preferred for touchscreen 143 

interactions). The full regression model was highly significant [R2 = 0.45, f (6,48) = 6.5, p = 144 

4.43 × 10-5, robust multiple linear regression; for variation inflation factors see Supplementary 145 

Figure 1]. The maximum variation inflation factor was 2.7, indicating that the regression model 146 

was not affected by multicollinearity (38). According to the simple prediction of use-dependent 147 

reduction in sensorimotor variability, the regression coefficient for social touches was expected 148 

to be either zero, suggesting that social actions are not distinctly tracked by the brain, or 149 

negative, suggesting that social actions are distinctly tracked but a higher number of social 150 

touches leads to lower sensorimotor variability. Contrary to these predictions, we found that 151 

higher number of social touches led to increased movement time variability [t(1,48) = 3.96, p 152 

= 0.00024, Figure 1c]. The case for non-social touches was anticipated, with higher number 153 

linked with smaller variability [t(1,48) = –2.66, p = 0.011, Figure 1d]. The same was observed 154 

for uncategorized touches [t(1,48) = –2.45, p = 0.018].  155 
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To what extent does the social behavior-movement time variability relationship (Figure 156 

1c) depend on App classification? We addressed this by repeating our analysis 105 times using 157 

randomly shuffled categories. The relationship uncovered for social touches was well separated 158 

from the distribution of relationships obtained by quantifying random category touches (Figure 159 

1e). This result further supported the notion that the type of touchscreen behavior determines 160 

how neuronal processes responsible for the thumb are configured.  161 

To address whether the touchscreen behavior-movement time variability relationship 162 

was specific to the thumb, a subset of volunteers also performed the task with their middle 163 

finger (which was rarely indicated as the preferred finger for touchscreen use). We found a 164 

strong association between the explanatory variables and movement time variability for the 165 

thumb [R2 = 0.79, f (6,10) = 6.43, p = 0.0053, robust linear regression], similarly to data for the 166 

full set of volunteers. Importantly, here too the number of social touches was significantly 167 

related with movement variability [t(1,10) = 2.70, p = 0.022, Supplementary Figure 2]. 168 

However, the results for the middle finger were strikingly different. We found no correlation 169 

between the explanatory variables and movement time variability [R2 = 0.28, f (6,10) = 0.66, p 170 

= 0.683, robust linear regression]. Moreover, the regression coefficient associated with the 171 

number of social touches was non-significant [t(1,10) = –0.30, p = 0.77, Supplementary Figure 172 

2]. These results suggested that the putative impact of touchscreen use on movement time 173 

variability is specific to the finger that is repeatedly engaged on the touchscreen.   174 

 175 

Social keypad touches distinctly impact on motor variability  176 

 177 

In the analyses conducted above, the touchscreen touches consisted of different gestures, i.e., 178 

keypad taps, swipes, and pinches. One interesting possibility was that the correlations identified 179 

for social touches were driven by the different gestures used for Social Apps. Therefore, we 180 

next restricted our analysis to pop-up keypad touches. It is safe to assume that for sensorimotor 181 

control, i.e., the degrees of freedom for motor control and visuomotor coordination, keypad 182 
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touches for Social Apps are the same as the ones for Non-social Apps. The difference concerns 183 

the specific content typed. Full regression model based on the keypad touches was significantly 184 

related to motor time variability [R2 = 0.60, f (6,25) = 6.36, p = 0.0004, robust linear regression]. 185 

We noted that the higher the number of social touches on the keypad, the larger the movement 186 

time variability [t(1,25) = 3.76, p = 0.0009, Supplementary Figure 3]. This suggested that 187 

gestures cannot simply account for the distinct imprint of social activities on motor time 188 

variability.  189 

 190 

Social and non-social touches show distinct patterns of correlations as a function of time 191 

  192 

The continuously recorded touchscreen behavior made prior to the laboratory measurements 193 

allowed us to address the question of whether the touchscreen-movement time variability 194 

relationship changes as a function of time. Should the relationship be driven by rapid plasticity, 195 

then it would simply decay as a function of time. However, if slow mechanisms were 196 

operational, then the relationship would peak with older rather than the most recent touchscreen 197 

experiences, as if indicating a delayed impact of touchscreen behavior. F-values, describing the 198 

relationship strength, revealed a simple decay trend for non-social touches. This was well 199 

described (R2 = 0.82, Figure 1f) by: 200 

 201 

𝑌𝑁𝑜𝑛−𝑠𝑜𝑐𝑖𝑎𝑙 𝑡𝑜𝑢𝑐ℎ𝑒𝑠 𝑣𝑠.𝑚𝑜𝑡𝑜𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ202 

= 8.6 ×  𝑒𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛−𝑠𝑜𝑐𝑖𝑎𝑙 𝑡𝑜𝑢𝑐ℎ𝑒𝑠 × 0.15 203 

 204 

The relationship for social touches was more complicated, consisting of both an initial decay 205 

and a strong relationship with older data. This dynamic was well described (R2 = 0.81, Figure 206 

1f) by: 207 

 208 
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𝑌𝑆𝑜𝑐𝑖𝑎𝑙 𝑡𝑜𝑢𝑐ℎ𝑒𝑠 𝑣𝑠.𝑚𝑜𝑡𝑜𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 209 

= [24.53 × 𝑒
−(

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑜𝑐𝑖𝑎𝑙 𝑡𝑜𝑢𝑐ℎ𝑒𝑠+17.06

1.97
)

2

] + [2.06 × 1015 × 𝑒
−(

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑜𝑐𝑖𝑎𝑙 𝑡𝑜𝑢𝑐ℎ𝑒𝑠−655.2

114.7
)

2

 ] 210 

 211 

 212 

The distinct pattern of time-dependent relationships for social vs. non-social touches suggested 213 

that they engage different forms of plasticity.  214 

We also revealed the dynamics of other explanatory variables that were significantly 215 

related to touchscreen use recorded over the 21-d period. In brief, as anticipated, variability was 216 

smaller with a higher typical rate of touchscreen touches [t(1,48) = –5.10, p = 5.73 × 10-6, 217 

Supplementary Figure 4] and with a larger number of Apps used [t(1,48) = –3.29, p = 0.002, 218 

Supplementary Figure 4]. Time-dependent dynamics for the typical rate of touchscreen 219 

touches indicated slow plasticity but the “number of Apps” variable dynamics indicated both 220 

rapid and slow plasticity (Supplementary Figure 4). The gender of the user was not 221 

significantly associated with the motor time variability [t(1,48) = –0.90, p = 0.37].  222 

 223 

Social touches distinctly affect the reaction time variability  224 

  225 

We opportunistically explored the variability of higher cognitive levels captured by the reaction 226 

time. For the reaction time variability, the full regression model was significant but weak [R2 = 227 

0.26, f (6,49) = 2.86, p = 0.02, robust linear regression]. Similarly to the results for movement 228 

time variability, we observed that a higher number of social touches was associated with greater 229 

reaction time variability [t(1,49) = 2.72, p = 0.009, Supplementary Figure 5]. The only other 230 

explanatory variable that significantly contributed to the regression model was the participant 231 

gender, such that the females showed less variability [t(1,49) = –3.25, p = 0.0002] than the 232 

males. Since the reaction and movement times measure different aspects of cognition, taken 233 
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together, they suggested that the putative impact of social touches is not restrained to the lower-234 

levels of sensorimotor cognition.   235 

 236 

The signal-to-noise ratio of the early somatosensory evoked potentials from the thumb strongly 237 

corresponds with touchscreen use  238 

 239 

To address the neurophysiological predictions of use-dependent plasticity, we measured the 240 

cortical potentials in response to tactile stimulation of the fingertips using 241 

electroencephalography (EEG). The EEG signals were noisy at a single trial level and an  242 

averaging method across several trials revealed an event-related potential (Figure 2a) (39). We 243 

used the ratio between the average response and a trial-to-trial deviation from the  average as a 244 

measure of putative signal-to-noise ratio. Based on the observations from an electrode showing 245 

the strongest response (according to the grand average), a distinctive rise in the signal-to-noise 246 

ratio was observed, with a peak at 55 ms (latencies are reported from the onset of stimuli, Figure 247 

2b).  248 

We were interested in both the direction and timing of neuronal correlates of 249 

touchscreen use. Based on the simplistic prediction of use-dependent plasticity, we anticipated 250 

that the more the fingertips are used on the touchscreen (irrespective of the social category of 251 

the activity), the larger the signal-to-noise ratio (6, 16, 40). Measurements at different latencies 252 

reflect distinct stages of the cortical somatosensory processing, with the potentials between 40 253 

and 100 ms dominated by the primary somatosensory cortex, and those between 100 and 200 254 

ms dominated by the secondary somatosensory and frontal cortices (41, 42).  255 

Multiple regression analysis included all time points from –30 to +200 ms and was 256 

conducted across all electrodes. Significant relationships with social and non-social touches 257 

were largely restricted to the electrodes above the contralateral sensorimotor cortex 258 

(contralateral to the stimulated hand), i.e., the electrodes that also showed the highest signal-to-259 
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noise ratio (Figure 2c–f). Our analysis revealed that the number of social touches was 260 

correlated with the thumb-associated signal-to-noise ratio at time points between 70 and 100 261 

ms, and then again between 125 and 150 ms (Figure 2c). Notably and contrary to the simplistic 262 

prediction, the direction of the correlation was such that the higher the number of social touches, 263 

the lower the signal-to-noise ratio (Figure 2c). In contrast, the history of non-social touches 264 

was significantly related to the cortical signals in a narrow window between 135 and 150 ms, 265 

so that the higher the number of touches, the larger the signal-to-noise ratio (the relationships 266 

with other explanatory variables are presented in Supplementary Figure 6). These results 267 

suggested that social touches were tracked by the somatosensory cortex separately from non-268 

social touches, and that the social touches were encoded at multiple stages of somatosensory 269 

processing.  270 

To verify whether the uncovered relationship between the number of social touches on 271 

the phone and signal-to-noise ratio for the thumb was based on the social category per se, we 272 

once again employed random category shuffling. Based on the maximum signal-to-noise ratio, 273 

for the signal-to-noise ratio at the chosen electrode, the distribution of relationships for the 274 

number of touches on random categories was well separate from the relationship based on 275 

touches on Social Apps (Figure 2g). We also explored the relationships between the number 276 

of social touches on the phone and the somatosensory signal-to-noise ratios for the index and 277 

middle fingers, in addition to the thumb (Figure 2h). In comparison with the thumb, the 278 

relationships were substantially weaker for the index finger and absent for the middle finger. In 279 

summary, these results suggested that engaging in social activity on the touchscreen diminishes 280 

the cortical signal-to-noise ratio associated with the thumb, contrary to the anticipated 281 

consequences based on a simplistic view of use-dependent plasticity.   282 

 283 

 284 

 285 

not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/064485doi: bioRxiv preprint first posted online Jul. 18, 2016; 

http://dx.doi.org/10.1101/064485


 13 

Neuronal correlates of social touches on the keypad  286 

 287 

The neuronal correlates of social touches described above were based on all touchscreen 288 

gestures, leaving open the possibility that the correlates reflected the underlying differences in 289 

the gestures used on Social vs. Non-social Apps. We matched the gesture type by restricting 290 

the analysis to pop-up keypads. A near-identical pattern of correlates was observed as in the 291 

original analysis that included all gestures. Briefly, with an increasing number of social touches 292 

on the keypad, the signal-to-noise ratio associated with the thumb between 70 and 100 ms 293 

decreased (Supplementary Figure 7).  294 

   295 

Social touches vs. somatosensory signal-to-noise ratio correlations as a function of time 296 

 297 

According to the results presented above, the signal-to-noise ratio at early stages of the cortical 298 

somatosensory processing was significantly correlated with the number of social touches on the 299 

touchscreen but not with the number of non-social touches. Touchscreen behavior was 300 

continuously recorded prior to the EEG measurements. We leveraged this continuity to 301 

establish the temporal dynamics in terms of the time elapsed between the touchscreen behavior 302 

and the EEG measurement. Using the observations from the chosen electrode, we found the 303 

following complex temporal dynamics: the relationships were strong when examining recent 304 

social touches, followed by complex relationships decay, and the relationships picked up again 305 

with older touches (Figure 2i). The dynamics, although apparently more complicated than what 306 

was observed for the social touches vs. movement time variability relationships, were well 307 

captured using the following formula (R2 = 0.83):  308 

 309 

 310 

 311 
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𝑌𝑆𝑜𝑐𝑖𝑎𝑙 𝑡𝑜𝑢𝑐ℎ𝑒𝑠 𝑣𝑠.𝑠𝑖𝑔𝑛𝑎𝑙−𝑡𝑜−𝑛𝑜𝑖𝑠𝑒 𝑟𝑎𝑡𝑖𝑜 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 312 

= (24.1 × 𝑒
−(

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑜𝑐𝑖𝑎𝑙 𝑡𝑜𝑢𝑐ℎ𝑒𝑠 + 6.68
1.1

)
2

 ) 313 

+ (21.3 × 𝑒
−(

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑜𝑐𝑖𝑎𝑙 𝑡𝑜𝑢𝑐ℎ𝑒𝑠 + 2.01
3.3

)
2

 ) 314 

+ (22.5 × 𝑒
−(

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑜𝑐𝑖𝑎𝑙 𝑡𝑜𝑢𝑐ℎ𝑒𝑠+24.76
12.1

)
2

 ) 315 

 316 

 317 

This relationship pattern suggested that a complex mix of both fast and slow mechanisms of 318 

plasticity is employed when configuring the cortex according to the history of social touches.  319 

 320 

Increased trial-to-trial variability in neuronal response amplitude is associated with social 321 

touches on the touchscreen   322 

 323 

A reduction in somatosensory cortical signal-to-noise ratio associated with a larger number of 324 

social touches may be associated with two entirely different attributes of neuronal activity. First, 325 

the reduction may genuinely reflect an alteration in the amount of neuronal activity; and second, 326 

the reduction may reflect increased trial-to-trial temporal jitter, so that averaging of responses 327 

across trials results in a smaller amplitude (43). In theory, it would be possible to address these 328 

two possibilities by focusing on the shape of the evoked potentials at a single trial level to 329 

estimate the variability in peak amplitude separately from peak latency. However, in practice, 330 

the EEG signals intensely fluctuate at the single trial level, precluding facile analysis of the 331 

shape of the evoked potentials. To partly smooth the signals, we averaged a subset of 25 trials. 332 

Next, we detected the amplitude and latency of local maxima that immediately followed the 333 

temporal landmarks placed at 50 and 85 ms (Figure 3a). The landmarks were set so as to focus 334 

on the initial stages of somatosensory processing that did not encode the number of social 335 

touches according to the signal-to-noise ratio analysis (50 ms) and later stages that did (85 ms, 336 

not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/064485doi: bioRxiv preprint first posted online Jul. 18, 2016; 

http://dx.doi.org/10.1101/064485


 15 

at the center of the correlated range of 70–100 ms). We repeated this with a different subset of 337 

25 trials, 105 times for each volunteer, to estimate the trial-to-trial variability of the 338 

corresponding latencies and amplitudes (Figure 3b,c).  339 

 The variability of cortical signal amplitudes detected by the 50 ms landmark was 340 

unrelated to the explanatory variables that included movement time variability in addition to 341 

the original set of variables derived from the touchscreen and gender [R2 = 0.31, f (7,33) = 2.11, 342 

p = 0.07, robust linear regression]. In particular, amplitude variability was clearly unrelated to 343 

the number of social touches [t(1,33) = 0.68, p = 0.5] and non-social touches [t(1,33) = –0.02, 344 

p = 0.98, Supplementary Figure 8]. The variability of signal latencies at this temporal landmark 345 

was also unrelated to the social touches [t(1,33) = 0.60, p = 0.6] and non-social touches [t(1,33) 346 

= –0.23, p = 0.8, Supplementary Figure 8]. In contrast, the variability of signal amplitudes 347 

detected by the 85 ms landmark was strongly related to the explanatory variables [R2 = 0.45, f 348 

(7,33) = 3.9, p = 0.003, robust linear regression]. We observed that the higher the number of 349 

social touches, the larger the variability [t(1,33) = 4.62, p = 5.6 × 10-5, Figure 3d]. There was 350 

a weak trend linking the number of non-social touches and neuronal variability, such that the 351 

higher the number, the lower the variability [t(1,33) = –1.9, p = 0.07, Figure 3e]. In terms of 352 

variability of signal latencies at this landmark, a weak relationship with the explanatory 353 

variables was observed [R2 = 0.34, f (7,33) = 2.5, p = 0.04, robust linear regression], and the 354 

higher the number of social touches, the larger the neuronal temporal variability [t(1,33) = 2.3, 355 

p = 0.03, Supplementary Figure 8]. Finally, we did not find any significant links between 356 

movement time variability and neuronal response variability [latency dispersion at 85 ms: t(33) 357 

= –1.8, p = 0.08; amplitude dispersion at 85 ms: t(33) = –1.91, p = 0.06]. This raised the 358 

possibility that although both movement time variability and neuronal variability increased with 359 

social touches, the two measures themselves reflected largely separate neuronal process.  360 

In summary, the results were consistent with the notion that trial-to-trial variability of 361 

both, the degree and timing of neuronal activity, increased according to the number of social 362 
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touches. However, it must be noted that the evidence for increased temporal variability was 363 

rather weak in contrast with the evidence for increased amplitude variability. 364 

 365 

Time-dependent structure of the relationships between touchscreen use and neuronal 366 

variability  367 

 368 

As with the preceding time-dependent analyses, we reasoned that the putative plasticity 369 

attributes could be studied by sampling touchscreen behavior at various times before laboratory 370 

measurements. Since a tendency was observed linking non-social touches over the entire 371 

recording period with neuronal variability, we first studied temporal dynamics of the 372 

phenomenon using F-values associated with non-social touches. The relationship strength 373 

simply decayed as a function of time and was well described by the following formula (R2 = 374 

0.81, Figure 3f):   375 

 376 

𝑌𝑁𝑜𝑛−𝑠𝑜𝑐𝑖𝑎𝑙 𝑡𝑜𝑢𝑐ℎ𝑒𝑠 𝑣𝑠.𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ =  9.9 × 𝑒𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛−𝑠𝑜𝑐𝑖𝑎𝑙 𝑡𝑜𝑢𝑐ℎ𝑒𝑠 × 0.34 377 

 378 

 The social touches showed more complex dynamics, such that the relationship was 379 

strong when using recent touchscreen data, weakening over time. The relationship was also 380 

strong when using older data. This was well captured by the following equation (R2 = 0.72, 381 

Figure 3f):  382 

 383 

𝑌𝑆𝑜𝑐𝑖𝑎𝑙 𝑡𝑜𝑢𝑐ℎ𝑒𝑠 𝑣𝑠.𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 384 

 385 

=  (11.04 ×  𝑒
−(

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑜𝑐𝑖𝑎𝑙 𝑡𝑜𝑢𝑐ℎ𝑒𝑠+16.6
7.47

)
2

 ) + (1.2 ×  1015  386 

×  𝑒
−(

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑜𝑐𝑖𝑎𝑙 𝑡𝑜𝑢𝑐ℎ𝑒𝑠−203.6
36.3

)
2

 ) 387 
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    388 

 Time-dependent neuronal variability dynamics of the correlates were qualitatively 389 

similar to what we observed for motor time variability. Overall, these results indicated that 390 

social touches are distinctly integrated to reconfigure the cortical circuits associated with the 391 

thumb and both rapid and slow forms of use-dependent plasticity are employed towards this 392 

putative reconfiguration.  393 

 394 

 395 

 396 

 397 

 398 

  399 
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Discussion 400 

 401 

One striking finding of this report was that the individuals who generated a larger number of 402 

social touches on the touchscreen were more variable in their response times when performing 403 

a simple task with the thumb. The somatosensory cortical activity also exhibited more 404 

variability associated with social touches. The dense digitization of behavior on the smartphone 405 

allowed us to quantify and contrast these relationships with the history of non-social touches. 406 

The results based on social touches data were contrary to the simplistic view of use-dependent 407 

plasticity, which predicted more stable sensorimotor computations corresponding to an 408 

increased touchscreen use. Even when placed outwith the framework of use-dependent 409 

plasticity, these results suggested that the understanding of inter-individual differences in 410 

elementary sensorimotor control is deeply inter-connected with the details of behavior 411 

expressed in the real world.  412 

We interpret these results as indicative that social activities on the touchscreen lead to 413 

increased sensorimotor variability. However, the correlational nature of our findings precludes 414 

us from discarding an alternative possibility that a higher sensorimotor variability leads to more 415 

social touches, or that a common factor determines both these variables. Based on the current 416 

knowledge, a reasonable case for the former cannot be made but the latter must be seriously 417 

considered. Extraverted individuals are characterized by higher usage of Social Apps than 418 

introverts and extraversion is associated with diminished somatosensory cortical activity 419 

evoked by the fingertips (44, 45). The extraversion-based relationship is specific to the left hand 420 

and is absent for the right hand (45). In contrast, our study focused on the right hand. Moreover, 421 

the extraversion-based relationship is not specific to particular fingertips, in contrast to the 422 

thumb-specific correlates of touchscreen use uncovered here and in our previous study (16). In 423 

addition to the personality factor, cognitive states that lead to enhanced attention or arousal may 424 

influence both the touchscreen behavior and neuronal measures in the laboratory (46). This 425 
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state-dependent view does not account for the observation that touchscreen-based correlates 426 

were largely restricted to the thumb. It also does not account for how the 1-2 weeks old 427 

touchscreen data could strongly correlate with the laboratory measurements. Given these 428 

evidences, the framework of use-dependent plasticity may be the most appropriate for 429 

considering our findings.   430 

Neuronal correlates uncovered here suggest that low-level sensorimotor processing, at 431 

the primary somatosensory cortex, encodes the history of social touches on the touchscreen. 432 

This observation is consistent with the notion that the primary sensory areas do not exclusively 433 

represent the incoming sensory inputs but integrate these inputs into behavioral context (47). 434 

For the somatosensory cortex, this is supported by laboratory observations that the cortex 435 

participates in multi-sensory integration and that factors, such as attention, modulate its activity 436 

and plasticity (4, 48, 49). Our findings provide a real-world example that the behavioral context 437 

of an experience is a key factor in configuring the cortex.    438 

The temporal dynamics of the associations uncovered herein provide some insights into 439 

the nature of processes engaged in the putative use-dependent plasticity. For both, trial-to-trial 440 

movement time variability and neuronal variability, we observed a complex fall and then rise 441 

in the relationships strength with older data from the Social Apps. This pattern suggests that 442 

social touches trigger both rapid and slow mechanisms of plasticity. Rapid mechanisms may 443 

include such processes as alteration in excitatory-inhibitory balance or the unmasking of pre-444 

existing circuits (8, 50). Slow mechanisms may include the formation of entirely new pathways, 445 

comprising changes of the underlying white matter that may take weeks to complete (5). The 446 

relationship with older data from the Non-social Apps simply decayed, suggesting exclusive 447 

deployment of rapid mechanisms. 448 

It is not clear how the sensorimotor cortex sorts the touches on Social Apps separately 449 

from Non-social Apps. One possibility is that the social touches are sorted based on top-down 450 

information flow via neuromodulators or feedback from high-level neuronal networks engaged 451 
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in social behavior (14, 51). Another possibility is that the touches are sorted in a bottom-up 452 

manner based on distinct sensory features that accompany the social touches. We tested this 453 

possibility by restricting our analysis to pop-keypad touches, only to discover that even when 454 

the gestures were apparently matched, the social touches showed a distinct sensorimotor 455 

correlate. Other relevant but unexplored differences in the input statistics of Social vs. Non-456 

social Apps may exist in terms of the length of the words typed or the complexity of language 457 

used. Nevertheless, a previous study on typing skills suggested that greater experience was 458 

associated with smaller sensorimotor variability (23). Therefore, the increased variability 459 

associated with social touches cannot be easily explained using the widely held notions on use-460 

dependent plasticity.  461 

Why does sensorimotor variability increase with social touches on the touchscreen? We 462 

propose that the increased variability is an inevitable consequence of repeated engagement of 463 

the thumb in social cognition. Essentially, social touches on the touchscreen are accompanied 464 

by an array of neuronal processes associated with language, anticipation, and social status (13). 465 

Presumably, using Hebbian-like mechanisms of plasticity, the thumb becomes increasingly 466 

connected with this broad array of processes. It is this enhanced embedding of sensorimotor 467 

processing in a broad array of neuronal processes that may lead to increased noise in low-level 468 

circuits (52).   469 

In the population of young adults sampled here, the median number of touchscreen 470 

touches generated per day was 2.7 × 103 and the most active individual generated 1.1 × 104 471 

touches per day. These numbers reflect the dominance of touchscreen events in modern human 472 

actions, comparable in magnitude with the number of steps (1 × 104) or eye blinks per day (1.2 473 

× 104) (53, 54). Therefore, it should not be surprising that the neuronal sensorimotor processing 474 

is reconfigured by touchscreen behavior (16). The nature of the touchscreen behavior-neuronal 475 

relationships uncovered by leveraging seamless quantifications on the smartphone warrants a 476 

more in-depth examination on how social activities on the touchscreen reconfigure the brain. 477 
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These links also highlight the complex nature of neurobehavioral relationships in elementary 478 

sensorimotor control, such that the history of social and non-social touches, the rate of 479 

touchscreen activity, and number of different Apps used are all independently encoded to 480 

impact future computations. Addressing how the quantitative history of touchscreen behavior 481 

relates to elementary neuronal functions will help bridge the large gap between inherently 482 

artificial laboratory experiments and the behavior expressed in the real world.  483 

 484 

 485 

 486 

 487 

 488 

 489 

 490 

 491 

 492 

  493 
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Materials and Methods  494 

 495 

Subjects 496 

 497 

Volunteers (n = 57) were recruited using campus-wide announcements at the University of 498 

Zurich and ETH Zurich between December 2014 and August 2015. The sample consisted of 499 

subjects within a narrow age group [26 females; 23 (20th percentile) to 28 (80th percentile) 500 

years old]. The age at which the volunteers reportedly began using the phone was also narrowly 501 

distributed [19 (20th percentile) to 25 (80th percentile) years old]. Previous reports on inter-502 

individual variability in cortical somatosensory signal-to-noise ratio, touchscreen use-503 

dependent plasticity and use-dependent reduction in sensorimotor variability employed a 504 

sample size between 15 – 28 (16, 18, 23, 55). Essentially we anticipated a weaker impact of the 505 

social touches on the touchscreen than the explanatory variables studied before, i.e., deliberate 506 

laboratory practice, touchscreen use in general and the presence of autism spectrum disorder. 507 

Therefore, we doubled the sample size and employed more regression parameters than the 508 

previous studies to increase the sensitivity of our analysis. All experimental procedures were 509 

conducted according to the Swiss Human Research Act approved by the cantons of Zurich and 510 

Vaud. The procedures also conformed to the Declaration of Helsinki. The volunteers provided 511 

written and informed consent before participating in the study. Reasonable health, right-512 

handedness, and ownership of a non-shared touchscreen smartphone were pre-requisites for 513 

participation. The handedness was further verified by a questionnaire (55). The fingers used on 514 

the touchscreen were analyzed using a pictorial survey where the volunteers ranked each finger 515 

on a scale 1–10 (1, least preferred; 10, most preferred).  516 

 517 

Smartphone data collection and analysis 518 

 519 
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A custom-designed background App was installed on the volunteers’ smartphones to quantify 520 

the touchscreen behavior (see the Supplementary Methods for in-depth description of the design 521 

and performance specifications of the App). Briefly, the App recorded the timestamps of 522 

touchscreen events and the label of the App on the foreground. The App recorded the 523 

touchscreen events with an interquartile error range of 5 ms. Data were stored locally and 524 

transmitted by the user at the end of the observation period via secure email. Smartphone data 525 

were processed using custom written scripts on MATLAB (MathWorks, Natik, USA). In 526 

smartphones with more relaxed permission settings, the pop-up keypad touches were 527 

additionally labeled. The number of touches on each App category (“Social”, “Non-social”, or 528 

“Uncategorized”) was divided by the length of the recording period to determine the number of 529 

touches per day. Apps that functioned to enable social interactions between a circle of friends 530 

or acquaintances were labeled as “Social” and Apps that clearly did not feature this functionality 531 

were labeled as “Non-social”. Apps whose label was poorly registered by the operating system, 532 

untraceable on Google Play, or that contained both social and non-social properties, e.g., 533 

gaming Apps with social messaging, were labeled as “Uncategorized”. The touches that were 534 

separated by less than 50 ms were eliminated from further analysis. The rate of touchscreen 535 

events was determined as 
 1

Median inter-touch interval 
. A recording period of up to 21 d was used 536 

for the main regression analysis. The number of Apps that were used over the recording period 537 

was counted.  538 

 539 

  540 
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Simple reaction time task and analysis  541 

 542 

Volunteers responded to a brief (10 ms) tactile pulse by depressing and releasing a button 543 

mounted on a micro switch. The tactile pulse was presented by using a computer-controlled 544 

solenoid tactile stimulator (Heijo Research Electronics, London, UK). The stimulating 545 

magnetic rod (2 mm in diameter) generated a supra-threshold 2-mN contact. The thumb or the 546 

middle finger was stimulated. The micro switch (extracted from RX-300 optical mouse, 547 

Logitech, Lausanne, Switzerland) was operated by press-downwards and release-upwards 548 

movements of the thumb or the middle finger. All volunteers performed the task with the thumb 549 

(n = 57) and a subset of randomly chosen volunteers performed the task with the middle finger 550 

in addition to the thumb (n = 17).  551 

The task was repeated 500 times (for each fingertip) within an experimental session, 552 

with 2 min break in the middle of the session. The pulses were delivered with 3 ± 1 s gap and 553 

the button presses generated analogue signals that were digitized at 1 kHz. In two volunteers, 554 

the micro switch off-state measurements malfunctioned; in one other volunteer, the on-state 555 

measurements malfunctioned. The corresponding measurements were subsequently eliminated 556 

from further analysis. The reaction time and movement time (the time taken to execute button 557 

depression) were fitted with three ex-Gaussian parameters. This form of fitting separates 558 

skewed reaction time data into a Gaussian region and an exponential region. Mean of the 559 

Gaussian region was captured by parameter µ, and variability of the Gaussian region by 560 

parameter σ. The exponent τ captured unusually slow responses. The parameters were estimated 561 

using previously described MATLAB scripts (36). 562 

 563 

EEG data acquisition and analysis  564 

 565 

A subset of volunteers (n = 43) participated in EEG experiments. The volunteers were seated 566 
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upright for the EEG and the right, stimulated, hand was concealed by a baffle. Computer-567 

controlled solenoid tactile stimulator (see above) was attached to the right thumb tip and to the 568 

right index and middle finger tips. To ease the tedium of the hours-long measurements required 569 

for gathering the tactile evoked potentials data (SSEPs), volunteers were allowed to view a 570 

movie (David Attenborough’s Africa series); white noise, played to mask the sound generated 571 

by the stimulator, was mixed with the movie soundtrack and delivered through headphones. 572 

The number of trials was set to 1000 for each fingertip, randomized for the tips, and the stimuli 573 

were separated for each fingertip by 2–4 s. A non-alcoholic and caffeine-free drink break was 574 

offered every 10 min, for a maximum of 10 min. To record the EEG signals, 64 electrodes were 575 

used (62 equidistant scalp electrodes and two ocular ones), against a vertex reference (EasyCap, 576 

Herrsching, Germany), as previously reported (16). The electrode locations were digitized in a 577 

3D nasion-ear coordinate frame (ANT Neuro and Xensor software, Netherlands) for a 578 

representative volunteer. The signals were recorded and digitized by BrainAmp (Brain Products 579 

GmbH, Gilching, Germany) at 1 kHz. Offline data processing was accomplished using 580 

EEGLAB, a toolbox designed for EEG analysis on MATLAB (56). The data were referenced 581 

to the average of all scalp electrodes and band-pass filtered between 1 and 80 Hz. “Epoched” 582 

trials over 80 μV were eliminated to remove large signal fluctuations, e.g., from eye blinks. The 583 

data were further processed using independent component analysis. Components dominated by 584 

eye movements and other measurement artifacts were eliminated by using the EEGLAB plug-585 

in SASICA (57). The signal-to-noise ratio was estimated using the linear modeling toolbox 586 

LIMO EEG (EEGLAB plug-in) (58). In this toolbox, R2 values were estimated for each 587 

volunteer based on single trials, as a sum of squares of the putative signal divided by the sum 588 

of squares of the residuals. Essentially, the predominant notion in the sensory evoked potential 589 

research field is that the average over multiple trials extracts a signal that is otherwise hidden 590 

in the measurement noise and background neuronal processes (39). The signal-to-noise ratio in 591 

this case captures how well the estimated mean (putative signal) represents the data. To 592 
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normalize the data across the sampled population, the square root of the putative signal-to-noise 593 

ratio was used for subsequent analyses using multiple linear regression.  594 

The trial-to-trial variations in EEG responses were estimated based on the rectified 595 

event-related waveforms of 25 randomly sampled samples. The resampling was reiterated 105 596 

times for each individual. The first local maxima above 50 and 85 ms were estimated for each 597 

iteration. The maxima were estimated using a MATLAB add-on function (“EXTREMA”). This 598 

form of bootstrapping was used to recover the distribution of signal timings and amplitudes, 599 

and these distributions were subsequently used to derive the coefficient of dispersion for each 600 

individual (
 Inter quartile range

Median 
 ) at marked time points.  601 

 602 

Correlational statistics  603 

  604 

All analyses involving the reaction and movement times were conducted by robust–bi-square–605 

multiple linear regression analysis (implemented in MATLAB). The fitted model was evaluated 606 

using ANOVA with a level of significance set at p = 0.05. The following main regression 607 

equation was used:  608 

 609 

𝑌 =  𝛽0 + 𝛽1𝑋𝑇𝑜𝑢𝑐ℎ𝑒𝑠 𝑜𝑛 𝑁𝑜𝑛−𝑠𝑜𝑐𝑖𝑎𝑙 𝐴𝑝𝑝𝑠 + 𝛽2𝑋𝑇𝑜𝑢𝑐ℎ𝑒𝑠 𝑜𝑛 𝑆𝑜𝑐𝑖𝑎𝑙 𝐴𝑝𝑝𝑠610 

+  𝛽3𝑋𝑇𝑜𝑢𝑐ℎ𝑒𝑠 𝑜𝑛 𝑈𝑛𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑧𝑒𝑑 𝐴𝑝𝑝𝑠 +  𝛽4𝑋𝑅𝑎𝑡𝑒 𝑜𝑓 𝑡𝑜𝑢𝑐ℎ𝑠𝑐𝑟𝑒𝑒𝑛 𝑡𝑜𝑢𝑐ℎ𝑒𝑠 611 

+  𝛽5𝑋𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑝𝑝𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑡𝑜𝑢𝑐ℎ𝑠𝑐𝑟𝑒𝑒𝑛 +  𝛽6𝑋𝐺𝑒𝑛𝑑𝑒𝑟 (𝑓𝑒𝑚𝑎𝑙𝑒=1)  612 

 613 

Where 𝑌 took the form of 𝑌𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 or 𝑌𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦, or 614 

𝑌𝑆𝑜𝑚𝑎𝑡𝑜𝑠𝑒𝑛𝑠𝑜𝑟𝑦 𝑝𝑢𝑡𝑎𝑡𝑖𝑣𝑒 𝑠𝑖𝑔𝑛𝑎𝑙−𝑡𝑜−𝑛𝑜𝑖𝑠𝑒 𝑟𝑎𝑡𝑖𝑜. For 𝑌𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 𝑖𝑛 𝑝𝑒𝑎𝑘 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 and 615 

𝑌𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 𝑖𝑛 𝑝𝑒𝑎𝑘 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒, the explanatory variable 𝛽7𝑋𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 616 

was added to the original equation. 𝛽1 𝑡𝑜 𝑛 comprised regression coefficients estimated by robust 617 
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regression, and 𝛽0 the intercept. The explanatory variables quantifying the touchscreen behavior 618 

were based on 21 d of recording made prior to the laboratory measures.  619 

To analyze the time-dependent structure of regression parameters associated with the 620 

number of touchscreen touches, we used the following approach. The parameters 621 

𝑋𝑇𝑜𝑢𝑐ℎ𝑒𝑠 𝑜𝑛 𝑁𝑜𝑛−𝑠𝑜𝑐𝑖𝑎𝑙 𝐴𝑝𝑝𝑠, 𝑋𝑇𝑜𝑢𝑐ℎ𝑒𝑠 𝑜𝑛 𝑆𝑜𝑐𝑖𝑎𝑙 𝐴𝑝𝑝𝑠, and 𝑋𝑇𝑜𝑢𝑐ℎ𝑒𝑠 𝑜𝑛 𝑈𝑛𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑧𝑒𝑑 𝐴𝑝𝑝𝑠 were re-622 

estimated over the span of 21 d with 12-h steps and 72-h windows. Other parameters were 623 

unchanged and, as in the main regression equation, were based on the data spanning the entire 624 

21-d period. To describe the time-dependent fluctuation of F-values, the relationship was 625 

iteratively fitted by comparing linear, exponential, and Gaussian equations with a maximum of 626 

three terms. The fit with the highest R2 was used to describe the relationships.    627 

Similarly, to assess the temporal structure of the variable typical rate of touchscreen use 628 

or the number of Apps used, the variables 𝑋𝑅𝑎𝑡𝑒 or 𝑋𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑝𝑝𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑡𝑜𝑢𝑐ℎ𝑠𝑐𝑟𝑒𝑒𝑛 were re-629 

estimated with 12-h steps and 72-h windows while other parameters remained unchanged.  630 

As a control, we repeated the analysis with shuffled App categories. Essentially, for the 631 

original analysis, the Apps were labeled as “Social”, “Non-social”, and “Uncategorized” 632 

according to a fixed criterion, i.e., Social Apps were those that enabled the communication of 633 

a message or an opinion to a circle of friends or acquaintances. The list of all Apps in the 634 

database and their classifications were randomly shuffled (105 iterations). These shuffled lists 635 

were then used to estimate the number of touches in each of the action categories. Note that the 636 

total number of Apps in each category was constant during shuffling.  637 

Plots for displaying multiple linear regression results in two dimensions (adjusted 638 

response plots) were generated using a built-in MATLAB function (plotAdjustedResponse). 639 

Formulation of this plotting method and its advantages are described elsewhere (59).  640 

The EEG data were correlated with touchscreen parameters using robust regression,  641 

iterative least squares method (implemented in LIMO EEG). The correlation coefficients were 642 

estimated across all electrodes and for the time period from –30 to 200 ms relative to the 643 
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stimulation onset. When focusing the analysis on keypad use, due to the smaller number of 644 

samples, the variables were restricted to parameters 𝑋𝑅𝑎𝑡𝑒 , 𝑋𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑢𝑐ℎ𝑒𝑠 𝑜𝑛 𝑆𝑜𝑐𝑖𝑎𝑙 𝐴𝑝𝑝𝑠 , and 645 

𝑋𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑢𝑐ℎ𝑒𝑠 𝑜𝑛 𝑁𝑜𝑛−𝑠𝑜𝑐𝑖𝑎𝑙 𝐴𝑝𝑝𝑠 . The regression statistics were corrected for multiple 646 

comparisons by using 1000 bootstraps and spatiotemporal clustering, as implemented in LIMO 647 

EEG.  648 

  649 
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 795 

Figure Legends  796 

 797 

Figure 1. The history of unconstrained touchscreen behavior reflects on the performance of a 798 

simple task. (a) Touchscreen activity was recorded for 21 d and followed by laboratory 799 

measurements of sensorimotor variability. (b) The task required responding to tactile stimuli 800 

by pressing and releasing a micro switch, as fast as possible, with the thumb. (c-d) Adjusted 801 

response plots. (c) Movement time variability (σ) was directly proportional to the number of 802 

touches generated on the Social Apps (social touches).  (d) The movement time variability was 803 

inversely proportional to the number of touches generated on the Non-social Apps (non-social 804 
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touches). (e)  The distribution of relationships for randomly categorized Apps (104 iterations) 805 

in comparison to the relationship uncovered for social touches. (f) Parsing the touchscreen 806 

recordings in 12 h steps (72 h bin) revealed that the relationship involving non-social touches 807 

simply decayed as a function of time, whereas the relationship involving social touches showed 808 

a more complex pattern. The statistical tests and the details of the fits are reported in the main 809 

text.  810 

 811 

Figure 2. Early cortical somatosensory processing reflects the history of Social App usage. (a)  812 

We estimated the signal-to-noise ratio in the cortical responses upon a brief tactile stimulus 813 

presented to the right thumb tip, the hand was in a resting position during the recording. The 814 

head plot shows the electrode location with the best response (red) (b) Putative signal-to-noise 815 

ratio (SNR) at the electrode (SS, sum of squares). Individual volunteers (gray lines) and 816 

population mean (black). (c) Event related coefficients with the SNR as dependent variable and 817 

touchscreen parameters based on the entire 21 d recordings as explanatory variables. 818 

Statistically significant coefficients (thickened lines, p < 0.05, corrected for multiple 819 

comparisons, ANOVA). (d) Head plot of the population mean of the SNR at a latency of 80 820 

ms. (e,f) The event related coefficients and the corresponding statistics at 80 ms. (g) At the 821 

chosen electrode and at 80 ms, the distribution of the relationship strength based on randomly 822 

categorized Apps (104 iterations) in comparison to the relationship uncovered for social 823 

touches. (h) The relationship with social touches was the strongest for the thumb, followed by 824 

the index finger, and, finally, the middle finger. (i) Parsing the touchscreen recordings in 12 h 825 

steps (72 h bin) revealed that the relationship between social touches and the signal-to-noise 826 

ratio evoked from the thumb at 80 ms latency fluctuated in a complex manner through the 827 

recording period.  The details of the fit is reported in the main text.  828 

 829 
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Figure 3. The trial-to-trial variability in the degree of cortical responses is proportional to 830 

Social App usage. (a–c) Depiction of the analysis method to separately estimate the trial-to-831 

trial variability in the cortical signal latency and the amplitude. (a) Rectified event related 832 

potentials based on a random sample of 25 trials was generated 105 times. The rectified potential 833 

based on all the trials in one volunteer is drawn in grey. The first local maxima encountered on 834 

103 iterated potentials after the set temporal landmarks of 50 and 85 ms are indicated (colored 835 

dots). The distribution of latencies (b) and amplitudes (c) of the first maxima in the same 836 

volunteer based on which the corresponding coefficient of dispersion (CD) was estimated. (d-837 

e) Adjusted response plots. (d) The greater the number of social touches in the 21-d recording 838 

period, the larger the variability in signal amplitudes at the 85 ms landmark (measured in terms 839 

of CD). (e) The relationship between the number of non-social touches and the variability was 840 

not significant. (f) Parsing the touchscreen recordings in 12 h steps (72 h bin) revealed that the 841 

relationship for non-social touches simply decayed with older touchscreen data and a more 842 

complex pattern was apparent for the social touches.  843 

Supplementary Information Index 844 

 845 

Supplementary Methods: Description of the App used to track touchscreen behavior.  846 

 847 

Supplementary List: A sample of all the Apps in the database to illustrate the App categorization 848 

used in this study in Social and Non-social Apps. 849 

 850 

Supplementary Figure 1: The plot matrix of the explanatory variables and the corresponding 851 

variation inflation factors.  852 

 853 

Supplementary Figure 2: The social touches do not reflect on movement time variability when 854 

the task is performed with the middle finger. (a) Adjusted response plot showing the link 855 
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between the number of social touches generated on the touchscreen and the movement-time 856 

variability when the task was performed by using the thumb. Specifically, higher the number 857 

of social touches the higher the movement time variability (b) When the same volunteers 858 

performed the task with the middle finger the relationship was absent.    859 

 860 

Supplementary Figure 3: Social touches on the keypad is related to movement time variability. 861 

(a-b) Adjusted response plots. (a) Higher the number of social touches on the touchscreen pop-862 

up keypad the higher the movement time variability. (b) The non-social touches on the keypad 863 

were not related to the variability.   864 

 865 

Supplementary Figure 4: Analysis of explanatory variables other than the number of social and 866 

non-social touches. (a-b) Adjusted response plots. (a) The link between the typical rate of 867 

touchscreen usage and movement time variability and (b) the number of Apps used and the 868 

variability. (c) The analysis of the relationships to movement time variability after parsing the 869 

touchscreen recordings in 12 h steps (72 h bin). 870 

 871 

Supplementary Figure 5: The reaction time variability is related to the number of social touches. 872 

(a) Adjusted response plot displaying that higher the number of social touches the larger was 873 

the reaction time variability. (b) The non-social touches were unrelated to the reaction time 874 

variability. (c) The relationship discovered for the social touches was well apart from the 875 

distribution of relationships obtained by using randomly shuffled categories.   876 

 877 

Supplementary Figure 6: The links between somatosensory cortical signal-to-noise ratio and 878 

the touchscreen-based explanatory variables. (a) Multiple regression analysis was conducted to 879 

explain the inter-individual variability in response to tactile stimulation at the thumb. The 880 

regression coefficients for the signal-to-noise ratio measured at the electrode with the strongest 881 
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response. The sold lines depict p < 0.05 (corrected for multiple comparisons, ANOVA). (b-e) 882 

Head plot of the regression coefficients and the corresponding statistics. (f-g) The relationships 883 

for the number of non-social touches and the typical rate on the touchscreen were the strongest 884 

for the thumb followed by the index and then the middle finger. 885 

 886 

Supplementary Figure 7: The neuronal correlates of the number of social touches on the 887 

touchscreen keypad. When we restricted our analysis to the pop-up keypad touches, we found 888 

that higher the number of social touches on the keypad smaller the signal-to-noise ratio as in 889 

the original analysis including all types of touchscreen events. The legend is identical to Figure 890 

2 panels a-f.   891 

 892 

Supplementary Figure 8: The neuronal variability determined from the early temporal landmark 893 

set at 50 ms was unrelated to the number of touches. (a-d) Data by using the 50 ms temporal 894 

landmark. Adjusted response plots showing the non-significant regressions between social or 895 

non-social touches and neuronal variability in terms of amplitude or latency. (e,f) Latency data 896 

by using the 85 ms temporal landmark shows a weak relationship between social touches (and 897 

not for non-social touches) and trial-to-trial temporal variability.   898 
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Figure 1. Figure 1. The history of unconstrained touchscreen behavior reflects on the performance of a simple task. 
(a) Touchscreen activity was recorded for 21 d and followed by laboratory measurements of sensorimotor variability. 
(b) The task required responding to tactile stimuli by pressing and releasing a micro switch, as fast as possible, with the thumb. 
(c-d) Adjusted response plots. (c) Movement time variability (σ) was directly proportional to the number of touches generated 
on the Social Apps (social touches).  (d) The movement time variability was inversely proportional to the number of touches 
generated on the Non-social Apps (non-social touches). (e)  The distribution of relationships for randomly categorized Apps 
(104 iterations) in comparison to the relationship uncovered for social touches. (f ) Parsing the touchscreen recordings in 12 h 
steps (72 h bin) revealed that the relationship involving non-social touches simply decayed as a function of time, whereas the 
relationship involving social touches showed a more complex pattern. The statistical tests and the details of the fits are reported 
in the main text. 
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Figure 2. Figure 2. Early cortical somatosensory processing reflects the history of Social App usage. (a)  We estimated the signal-to-noise 
ratio (SNR) in the cortical responses upon a brief tactile stimulus presented to the right thumb tip, the hand 
was in a resting position during the recording. The head plot shows the electrode location with the best response (red) 
(b) SNR at the electrode (SS, sum of squares). Individual volunteers (gray lines) and population mean (black). (c) Event related 
coefficients with the SNR as dependent variable and touchscreen parameters based on the entire 21 d recordings as 
explanatory variables. Statistically significant coefficients (thickened lines, p < 0.05, corrected for multiple comparisons, ANOVA). 
(d) Head plot of the population mean of the SNR at a latency of 80 ms. (e,f ) The event related coefficients and the corresponding 
statistics at 80 ms. (g) At the chosen electrode and at 80 ms, the distribution of the relationship strength based on randomly 
categorized Apps (104 iterations) in comparison to the relationship uncovered for social touches. (h) The relationship with social 
touches was the strongest for the thumb, followed by the index finger, and, finally, the middle finger. (i) Parsing the touchscreen 
recordings in 12 h steps (72 h bin) revealed that the relationship between social touches and the SNR at 80 ms latency fluctuated 
in a complex manner through the recording period.  The details of the fit is reported in the main text. 
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Figure 3. Figure 3. The trial-to-trial variability in the degree of cortical responses is proportional to Social App usage. 
(a–c) Depiction of the analysis method to separately estimate the trial-to-trial variability in the cortical signal latency and the 
amplitude. (a) Rectified event related potentials based on a random sample of 25 trials was generated 105 times. The rectified 
potential based on all the trials in one volunteer is drawn in grey. The first local maxima encountered on 103 iterated potentials 
after the set temporal landmarks of 50 and 85 ms are indicated (colored dots). The distribution of latencies (b) and amplitudes (c) 
of the first maxima in the same volunteer based on which the corresponding coefficient of dispersion (CD) was estimated. 
(d-e) Adjusted response plots. (d) The greater the number of social touches in the 21-d recording period, the larger the variability 
in signal amplitudes at the 85 ms landmark (measured in terms of CD). (e) The relationship between the number of non-social 
touches and the variability was not significant. (f ) Parsing the touchscreen recordings in 12 h steps (72 h bin) revealed that the 
relationship for non-social touches simply decayed with older touchscreen data and a more complex pattern was apparent for 
the social touches. 
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