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ABSTRACT
Motivation: In recent years, molecular species delimitation
has become a routine approach for quantifying and classifying
biodiversity. Barcoding methods are of particular importance in large-
scale surveys as they promote fast species discovery and biodiversity
estimates. Among those, distance-based methods are the most
common choice as they scale well with large datasets; however,
they are sensitive to similarity threshold parameters and they ignore
evolutionary relationships. The recently introduced “Poisson Tree
Processes” (PTP) method is a phylogeny-aware approach that does
not rely on such thresholds. Yet, two weaknesses of PTP impact its
accuracy and practicality when applied to large datasets; it does not
account for divergent intraspecific variation and is slow for a large
number of sequences.
Results: We introduce the multi-rate PTP (mPTP), an improved
method that alleviates the theoretical and technical shortcomings of
PTP. It incorporates different levels of intraspecific genetic diversity
deriving from differences in either the evolutionary history or sampling
of each species. Results on empirical data suggest that mPTP
is superior to PTP and popular distance-based methods as it,
consistently, yields more accurate delimitations with respect to the
taxonomy (i.e., identifies more taxonomic species, infers species
numbers closer to the taxonomy). Moreover, mPTP does not require
any similarity threshold as input. The novel dynamic programming
algorithm attains a speedup of at least five orders of magnitude
compared to PTP, allowing it to delimit species in large (meta-)
barcoding data. In addition, Markov Chain Monte Carlo sampling
provides a comprehensive evaluation of the inferred delimitation in
just a few seconds for millions of steps, independently of tree size.
Availability: mPTP is implemented in C and is available for download
at http://github.com/Pas-Kapli/mptp under the GNU Affero
3 license. A web-service is available at http://mptp.h-its.org.
Contact: Paschalia.Kapli@h-its.org, Alexandros.Stamatakis@h-
its.org, Tomas.Flouri@h-its.org

1 INTRODUCTION
Species are fundamental units of life and form the most common
basis of comparison in evolutionary studies. Therefore, species

∗to whom correspondence should be addressed

delimitation is a critical task in systematic studies with potential
implications in all subfields of biology that involve evolutionary
relationships. In line with the species concept of De Queiroz
(2007) and the integrative taxonomy approach (Dayrat, 2005), a
reliable identification of a new species involves data from multiple
sources (e.g., ecology, morphology, evolutionary history). Such
an approach is necessary for meticulous comparative evolutionary
studies but is tremendously difficult to apply, if at all possible,
in large biodiversity studies (e.g., vast barcoding, environmental,
microbial samples). In such studies, researchers use alternative units
of comparison that are easier to delimit [Molecular Operational
Taxonomic Units (Blaxter et al., 2005), Recognizable Taxonomic
Units (Oliver and Beattie, 1993)] rather than going through the
cumbersome task of delimiting and describing full species. The
correspondence of these units to real species remains ambiguous
(Casiraghi et al., 2010), especially in the absence of additional
information. However, they are practical for biodiversity and β-
diversity estimates (Valentini et al., 2009).

With the introduction of DNA-barcoding (Hebert et al., 2003)
and the advances in coalescent theory (Hickerson et al., 2010),
genetic data became the most popular data source for delimiting
species. Several algorithms and implementations for molecular
species delimitation exist, most of which are inspired by the
phylogenetic species concept (Zhang et al., 2013; Fujisawa and
Barraclough, 2013; Yang and Rannala, 2014) and the DNA
barcoding concept (Puillandre et al., 2012; Hao et al., 2011;
Edgar, 2010). These methods address different research questions
(Casiraghi et al., 2010); thus, the user needs to assess several
factors before choosing the most appropriate method for a particular
study. The “species-tree” approaches rely on multiple genetic loci
(Yang and Rannala, 2014; Jones et al., 2015) and account for
potential species-tree/gene-tree incongruence (Maddison, 1997).
Such methods are the most appropriate when the goal is to
identify and describe new species. However, most current
implementations (Yang and Rannala, 2014; Jones et al., 2015)
are computationally demanding and can only be applied to small
datasets of closely related taxa, becoming impractical with a
growing number of species and/or loci [see Fujisawa et al. (2016)
for a recently introduced faster method]. Large-scale biodiversity
(meta-) barcoding studies comprise hundreds or even thousands of
samples of high evolutionary divergence. The goal of such studies
often is to obtain β-diversity estimates (comparative studies of
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different treatments, ecological factors, etc.) or a rough estimate
of the biodiversity for a given sample. Hence, a researcher may
use distance-based methods (Puillandre et al., 2012; Hao et al.,
2011; Edgar, 2010) that scale well on large datasets with respect
to run times. However, these methods ignore the evolutionary
relationships of the involved taxa and rely on not necessarily
biologically meaningful ad hoc sequence similarity thresholds.
Moreover, they are restricted to single-locus data, which reduces
species delimitation accuracy (Dupuis et al., 2012).

The General Mixed Yule Coalescent (GMYC; Pons et al., 2006;
Fujisawa and Barraclough, 2013) and the recently introduced
Poisson Tree Processes (PTP; Zhang et al., 2013) are two
similar models that bridge the gap between “species-tree” and
distance-based methods for species delimitation. While GMYC
and PTP are also restricted to single loci, they do take the
evolutionary relationships of the sequences into account. Since,
at the same time, they are computationally inexpensive they can
be deployed for analyzing large (meta-)barcoding samples. The
GMYC method (Fujisawa and Barraclough, 2013) uses a speciation
(Yule, 1925) and a neutral coalescent model (Hudson, 1990). It
strives to maximize the likelihood score by separating/classifying
the branches of an ultrametric tree (in units of absolute or
relative ages) into two processes; within and between species. In
contrast to GMYC, PTP models the branching processes based
on the number of accumulated expected substitutions between
subsequent speciation events. PTP tries to determine the transition
point from a between- to a within-species process by assuming
that a two parameter model, with one parameter for speciation
and one parameter for the coalescent process best fits the data.
The underlying assumption is that each substitution has a small
probability of generating a branching event. Within species,
branching events will be frequent whereas among species they will
be more sparse.The probability of observing n speciations for k
substitutions follows a Poisson process and therefore, the number
of substitutions until the next speciation event can be modeled via
an exponential distribution (Zhang et al., 2013). Given that PTP
directly uses substitutions, it does not require an ultrametric input
tree, the inference of which can be time consuming and error prone.
Thus, PTP often yields more accurate delimitations than GMYC
(Tang et al., 2014).

Here, we introduce a new algorithm and an improved model as
well as implementation of PTP that alleviates previous shortcomings
of the method. The initial PTP assumes only one exponential
distribution for the speciation events and only one for the coalescent
events, across all species in the phylogeny. While the speciation rate
can be assumed to be constant among closely related species, the
intraspecific coalescent rate and consequently the genetic diversity
may vary significantly even among sister species. This divergence in
intraspecific variation can be attributed to factors, such as population
size and structure, population bottlenecks, selection, life cycle
and mating systems (see Bazin et al. (2006) for further details).
Additionally, sampling bias may also be responsible for observing
different levels of intraspecific genetic diversity and it is already
known to decrease the accuracy of PTP (Zhang et al., 2013). To
incorporate the potential divergence in intraspecific diversity, we
propose the novel multi-rate Poisson Tree Processes (mPTP) model.
In contrast to PTP, it fits the branching events of each delimited
species to a distinct exponential distribution. Thereby it can better
accommodate the sampling- and population-specific characteristics

of a broader range of empirical datasets. In addition, we develop
and present a novel, dynamic-programming algorithm for the mPTP
model. The implementation is several orders of magnitude faster
than the original PTP and yields more accurate delimitations almost
instantly on large datasets comprising thousands of taxa. Note that,
the original PTP requires days of computation time on a desktop
to analyze such datasets. Finally, we provide an Markov chain
Monte Carlo (MCMC) delimitation sampling approach that allows
for inferring delimitation support values.

2 METHODS
In this section we introduce the basic notation that is used throughout
the manuscript, and provide a detailed description of the mPTP algorithm
including the MCMC sampling method.

A binary rooted tree T = (V,E) is a connected acyclic graph where V is
the set of nodes andE the set of branches (or edges), such thatE ⊂ V ×V .
Each inner node u has a degree (number of branches for which u is an end-
point) of 3 with the exception of the root node which has degree 2, while
leaves (or tips) have degree 1. We use the notation (u, v) ∈ E to denote
an branch with end-points u, v ∈ V , and ` : V × V → R to denote the
associated branch length. Finally, we use Tu to denote the subtree rooted at
node u.

2.1 Multi-rate PTP (mPTP) heuristic algorithm
Let T = (V,E) be a binary rooted phylogenetic tree with root node r. The
optimization problem in the original PTP is to find a connected subgraph
G = (Vs, Es) of T , where Vs ⊆ V , Es ⊆ E, r ∈ Vs such that (a)
G is a binary tree, and (b) the likelihood of i.i.d branch lengths Es and
Ec = E \ Es fitting two distinct exponential distributions is maximized.
Formally, we are interested in maximizing the likelihood

L =

 ∏
x∈Es

λ̂se
−λ̂s`(x)

×
 ∏
x∈Ec

λ̂ce
−λ̂c`(x)

 (1)

where λ̂s =
(

1
|Es|

∑
x∈Es

`(x)
)−1

and λ̂c =
(

1
|Ec|

∑
x∈Ec

`(x)
)−1

are maximum likelihood (ML) estimates for the rate parameters.
In the multi-rate PTP (mPTP), we are interested in fitting the branch

lengths of each maximal subtree of T (each species delimited in T ) formed
by branches from Ec to a distinct exponential distribution. Let T1 =

(V1, E1), T2 = (V2, E2), . . . , Tk = (Vk, Ek) be the maximal subtrees
of T formed exclusively by branches from Ec such that tki=1Ei = Ec and
no pair i, j exists for which Vi ∩ Vj 6= ∅. The task in mPTP is to maximize
the likelihood

L =

k∏
i=1

∏
x∈Ei

λ̂ie
−λ̂i`(x) ×

∏
x∈Es

λ̂se
−λ̂s`(x) (2)

where λ̂i =
(

1
|Ei|

∑
x∈Ei

`(x)
)−1

for 1 ≤ i ≤ k. We refer to the k
maximal subtree root nodes as coalescent roots.

Whether a polynomial-time algorithm exists to solve the two problems
remains an open question. We assume that the problem is hard, and thus,
we propose a greedy, dynamic-programming (DP) algorithm to solve the
problem. The algorithm visits all inner nodes of T in a bottom-up postorder
traversal, that is, a node is visited only after both of its child nodes have
been visited. For each node u, the DP computes an array of |Eu|+ 1 scores,
whereEu is the set of branches of subtree Tu. Entry 0 ≤ i ≤ |Eu| assumes
that Tu contains i between-species branches. For the case i = 0, Tu is
part of a coalescent process, while for i = |Eu|, Tu is part of the single
between-species process. Each entry i > 0 contains the maximization of
Eq. 2, by considering only (i) the branches of subtree Tu and (ii) the set
S of branches of T that have at least one end-point on the path from the
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Fig. 1. Visual representation of the mPTP dynamic programming algorithm.
Each entry i at node u is computed from information stored at entries j and
k of child nodes v and w, for all j and k such that i = j + k + 2. The
dashed branches denote the smallest set S of branches which, by definition,
must be part of the between-species process, irrespective of the resolution of
other subtrees outside Tu.

root r to u. For this subset of branches, the between-species process consists
of exactly |S| + i branches, and we only consider the coalescent processes
inside Tu. We restrict ourselves to the set of branches S since it is infeasible
to test all possible groupings of branches outside of Tu. For any i > 0, it
holds that the edges from u leading to its child nodes v and w belong to
the between-species process, and therefore, S is the smallest set of edges
which, by definition, must be part of the between-species process. Figure 1
illustrates the algorithm for a particular triplet of nodes u, v, w, and marks
the set S with dashed lines. Entry 0 represents the null-model for Tu, that
is, all branches of Tu belong to the coalescent process [or, equivalently,
to the speciation process, as the two cases can not be distinguished by the
(m)PTP model]. The score (maximization of Eq. 2) for entry i ≥ 1 is
computed from the information stored in the array entries j and k of the
two child nodes v and w, by considering all combinations of j and k such
that i = j + k + 2 (plus two accounts for the two outgoing edges of u).
Not all array entries are necessarily valid. For instance, entry i = 1 may be
invalid given that node u has two out-going branches in the between-species
process. Similarly, it is possible that two invalid entries j and k exist for a
given value of i. Each entry i at node u stores the computed score, the sum of
between-species branch lengths σiu within Tu, the productLiu of likelihoods
of coalescent processes inside Tu, and pointers for storing which entries j
and k were chosen for calculating a specific entry i. The first term of Eq. 2
(coalescent process) is the product of Ljv and Lkw , while the second term
(speciation process) is computed from the sums σjv and σkw and the sum of
branch lengths from S. We store the score and child node entry indices for
the combination of j and k that maximize the score. Once the root node of T
is processed, we have the likelihood values of exactly |E|+ 1 delimitations,
one of which corresponds to the null-model (i = 0). We select the entry
i that minimizes the Akaike Information Criterion score corrected for small
sample size (AICc; McQuarrie and Tsai (1998)). This way we penalize over-
splitting caused by the increasing number of parameters (λ1, λ2, . . . , λk).
A lower AICc value corresponds to a model which better explains the data.
Once the best AICc corrected entry i at the root has been determined, we
perform a backtracking procedure using the stored child node pointers to
retrieve the coalescent roots and hence obtain the species delimitation. The
average asymptotic run-time complexity of the method is O(n2) with a
worst-case of O(n3), where n is the number of nodes in T (for the proofs
see paragraph 1, Supplement I).

2.2 MCMC sampling
We deploy an MCMC approach to obtain delimitation support values for
each node. In each step, we propose a new delimitation by designating a set
of coalescent roots and compute its score. We denote the current delimitation
as θ and the proposed delimitation, after applying a move to θ, as θ′. We use
the acceptance ratio

α =
L′c
Lc
×
g(θ′ → θ)

g(θ → θ′)

to decide whether to keep the proposed delimitation θ′ or not. If α ≥ 1,
we accept the delimitation, otherwise we accept it with probability α. The
term L′c/Lc is the ratio of the AICc-corrected likelihood values of the θ′

over θ, and g(x→ y) is the transition probability from one delimitation, x,
to any other delimitation y. Given θ, we propose θ′ by applying one of two
possible moves with equal probability. The first move is to split a coalescent
clade by placing a randomly selected coalescent root node u (and its two
out-going branches) in the set of nodes (and branches) corresponding to the
speciation process. The second type of move selects a node u whose two
child nodes are coalescent roots, joins their branch sets into one, and sets
u as the new coalescent root. The support value for a particular node u is
the sum of Akaike weights (Akaike, 1978; Burnham and Anderson, 2002) of
all MCMC samples for which u is part of the speciation process normalized
by the sum of all Akaike weights. The method’s run-time is linear to the
number of MCMC steps and independent of the tree size. For a sketch of the
algorithm see Paragraph 3 of Supplement I.

It is considered good practice that MCMC results are accompanied by a
critical convergence assessment. Arguably, a good way of accomplishing
this is to compare samples obtained from independent MCMC runs.
We use the average standard deviation of delimitation support values
(ASDDSV) for quantifying the similarity among such samples. Inspired by
the average standard deviation of split frequencies (ASDSF) technique from
phylogenetic inference (Ronquist et al., 2012), we calculate the ASDDSV
by averaging the standard deviation of per-node delimitation support values
across multiple independent MCMC runs that explore the delimitation space.
Each such MCMC run starts from a randomly generated delimitation.
Similarly to ASDSF, ASDDSV approaches zero as runs converge to the same
distribution of delimitations.

ASDDSV is useful for monitoring that chains converge to the same
distribution, but does not imply that they have globally converged. It is also
desirable to compare the delimitation support values of an MCMC run with
the ML estimate. For this, we introduce the average support value (ASV),
that is,

1

|T |

 ∑
u∈VS

f(u) +
∑
u/∈VS

1− f(u)

 ,

where VS is the set of the speciation process nodes and f(u) the support
value of a speciation node u. The closer ASV is to one, the better the support
values agree with the ML delimitation.

3 EXPERIMENTAL SETUP
For the evaluation of mPTP we use empirical datasets that comprise a
number of varying parameters (substitution rate, geographic range, genetic
diversity etc.), which are difficult to reproduce with simulations. We
retrieved all datasets from the Barcode of Life Database (BOLD, http://
www.boldsystems.org/), the largest barcode library for eukaryotes.
For each of the datasets we inferred the putative species with mPTP
and four other methods that model speciation on the basis of genetic
distance (including the original PTP method), and assess their accuracy with
respect to the current taxonomy (available in BOLD). Finally, we avoided
comparisons with time-based species delimitation methods (Fujisawa and
Barraclough, 2013; Yang and Rannala, 2014; Jones et al., 2015) which
are time consuming and heavily dependent on the factorization accuracy of
branch lengths into time and evolutionary rate.
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Table 1. Main characteristics of empirical test datasets. NSp: Number
of species, NMSp: Number of Monophyletic species, NSeq: Number
of Sequences, AL: Alignment Length, APD: Average P-Distance.

Genus Phylum NSp NMSp NSeq AL APD (%)

Amynthas Annelida 43 28 265 1539 16.7
Phyllotreta Arthropoda 16 14 195 659 11.8
Atheta Arthropoda 84 60 399 1076 14.2
Philodromus Arthropoda 15 11 493 713 10.2
Digrammia Arthropoda 20 17 286 659 6.2
Carabus Arthropoda 49 34 514 880 11.5
Bembidion Arthropoda 97 80 532 1495 12.9
Calcinus Arthropoda 29 24 641 679 16.6
Xysticus Arthropoda 35 33 861 1238 8.9
Gammarus Arthropoda 53 27 755 1082 21.4
Clubiona Arthropoda 35 32 1127 1256 8.4
Culicoides Arthropoda 100 76 1252 1485 17.5
Balanus Arthropoda 4 3 1775 1548 2.3
Drosophila Arthropoda 148 109 2303 1589 11.2
Anopheles Arthropoda 121 68 2741 1544 10.5
Anolis Chordata 41 35 181 709 18.9
Coryphopterus Chordata 12 10 282 658 14.7
Myotis Chordata 54 37 789 1542 11.7
Cyanea Cnidaria 5 4 92 1002 12.7
Ophiura Echinodermata 13 8 75 1605 16.8
Holothuria Echinodermata 18 12 355 1553 13.6
Mopalia Mollusca 20 11 304 708 10.9
Rhagada Mollusca 24 12 686 675 11.1
Echinococcus Platyhelminthes 7 5 316 1608 5.1

3.1 Empirical Datasets
We retrieved 24 empirical genus level datasets (Table 1) that cover six
of the most species rich animal Phyla (Arthropoda, Annelida, Chordata,
Echinodermata, Platyhelminthes, Cnidaria) in BOLD. This allows to
evaluate the efficiency of mPTP given a wide range of organisms with diverse
biological traits and evolutionary histories. The majority of datasets (14 out
of 24 datasets) belong to the Arthropoda which is the most species-rich
animal group, and the most common group PTP has been applied to so far
(in 61 out of 110 citations). Within Arthropoda, we mainly focus on insects
(8 out 14 datasets), which represents over 90% of all animals. The rest of the
empirical datasets spans the remaining five phyla.

All datasets comprise the 5’ end of the common animal barcoding gene
“Cytochrome Oxidase subunit I” (COI-5P) (Hebert et al., 2003). The number
of taxonomic species in the 24 datasets ranged from four (Balanus) to 148
(Drosophila), while the number of sequences from 75 (Ophiura) to 2741
(Anopheles). The number of sequences per species ranged between two
and the extreme case of 1763 for Balanus glandula, reflecting situations
where some species might be readily and others rarely available. Finally,
the geographical distribution of the datasets also varied from the global scale
(e.g., Anopheles, Drosophila) to the local scale (e.g., the Anolis samples
originate from the islands and surrounding shores of the Caribbean sea).

3.2 Putative Species Delimitation
The sequence files obtained from the BOLD database were preprocessed to
remove three factors that interfere with the assessment of the delimitation
methods. First, the efficiency of each method is measured by comparing
the delimited to the taxonomic species (see paragraph 3.3). Therefore, it
was necessary to remove sequences of ambiguous taxonomic assignment.
Second, we removed duplicate sequences, using the “-f c” option of RAxML
version 8.1.17 (Stamatakis, 2014), to avoid unnecessary computations.
Finally, we removed singleton species (i.e., species represented by a single
sequence) to eliminate the impact of random exact matches (of delimited
to taxonomic species) in methods that tend to oversplit. Additionally,

singletons also interfere with the efficiency of delimitation methods
(Puillandre et al., 2012).

For each dataset, we inferred putative species using the two PTP models
and we compared the results to three popular and well-established distance-
based methods; ABGD (Puillandre et al., 2012), Uclust (Edgar, 2010) and
Crop (Hao et al., 2011). The input format of the data and parameters
differ among the five methods. The two PTP versions require a rooted
phylogenetic tree. Therefore, we used Mafft v7.123 (Katoh and Standley,
2013) to align the sequences of each dataset, and subsequently RAxML
under the default algorithm and the GTR+Γ model, to infer an ML tree.
To root each tree, we chose outgroup taxa based on previously published
phylogenies. For the genera without such prior phylogenetic knowledge, we
selected a representative species of a genus belonging to the same family
or tribe given the taxonomy in BOLD (NCBI Accession Numbers of the
ingroup and outgroup sequences are provided in Supplement II). Moreover,
we implemented a method that identifies and ignores branches that result
from identical sequences, during the delimitation process (for more details
see paragraph 2 and Figures 1 and 2, Supplement I).

For mPTP, we further assessed the confidence of the ML solution using
MCMC sampling. For each dataset, we executed ten MCMC runs of 2×107

steps, each starting from an initial random delimitation. We estimated the
convergence of the independent runs by calculating the ASDDSV. To obtain
an overall support for the ML estimate, we computed the mean ASV over all
ten independent runs.

For each of the remaining three methods (ABGD, Uclust and Crop),
we optimized a set of performance-critical parameters and chose the
delimitation that recovered the highest number of taxonomic species.
ABGD requires two parameters: (i) the prior limit to intraspecific diversity
(P ) and (ii) a proxy for the minimum barcoding gap among the inter-
and intraspecific genetic distances (X). We ran ABGD with the aligned
sequences and 400 parameter combinations. For P we sampled 100 values
from the range 〈0.001, 0.1〉 and for X we used the four values 0.05, 0.1,
0.15 and 0.2. The only critical parameter for Uclust is the fractional identity
threshold (id) which defines the minimum similarity for the sequences of
each cluster. We performed 50 consecutive runs, increasing the id value by
0.01 starting with 0.5. Finally, for Crop we tried four combinations of the l
and u parameters that correspond to similarity thresholds of 1%, 2%, 3%,
and 5% as suggested by the authors (http://code.google.com/p/
crop-tingchenlab/). Another critical parameter for Crop is z, which
specifies the maximum number of sequences to consider after the so-called
initial “split and merge”. We set z to 100 which is considered as a reasonable
value for full-length barcoding genes.

3.3 Comparison of delimitation methods
The evaluation of the five methods is based on three measures. First, the
percentage of recovered taxonomic species (RTS), that is, the percentage of
delimited species that match the “true species”. We consider the taxonomic
species retrieved from BOLD to be the “true species”, and we deem the
performance of the algorithm better when the number of matches to the
taxonomic species is higher. Since we do not have the expertise to evaluate
the taxonomy of each dataset, we could not assess the accuracy of each
individual delimitation. However, by assuming that, the closer a delimitation
is to the current taxonomy, the higher the probability to correspond to the real
species, we gain some insight as to the relative accuracy among the different
methods. The second measure is the F-score, also known as F-measure or
F1-score (Rijsbergen, 1979), that is, the harmonic mean of precision and
recall measures. In species delimitation, precision denotes the fraction of
clustered sequences belonging to a single taxonomic species. The recall,
describes the fraction of sequences of a species that are clustered together.
The F-Score improves when decreasing (i) the number of species which are
split into more than one groups and (ii) the number of taxonomic species
lumped together into one group. The F-score ranges from 0 to 1, where 1
indicates a perfect agreement among two delimitations. Finally, the third
measure is simply the number of delimited species.

4

. CC-BY-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/063875doi: bioRxiv preprint first posted online Jul. 14, 2016; 

http://dx.doi.org/10.1101/063875
http://creativecommons.org/licenses/by-nd/4.0/


Multi-rate Poisson Tree Processes (mPTP)

Fig. 2. Average performance over all datasets of the five delimitation
methods (mPTP, PTP, Uclust, Crop, and ABGD) for the A) number of
species, B) F-scores and C) number of RTS

The accuracy of either PTP model in recovering the true species depends
on whether these taxa form monophyletic clades. Thus, for PTP and mPTP,
we also compare their performance by applying the above measures for
monophyletic taxonomic species only. Finally, we also quantify how the
percentage of monophyletic species correlates to the percentage of RTS for
the five delimitation methods we test.

4 RESULTS
We analyzed a total of 17,219 COI sequences. The alignment length
ranged from 658 bp to 1620 bp, while the proportion of variable
nucleotides, measured by the P-Distance (MEGA v5.2; Tamura
et al., 2011) averaged over the sequences of each dataset , varied
from 2.3% (Balanus) to 21.4% (Gammarus). Table 1 presents the
fraction of monophyletic taxonomic species in the phylogenies for
each dataset. The fraction ranges from only 51% in Gammarus, the
most variable of the datasets, to 94% (Xysticus). Out of the 400
combinations of parameters tested for ABGD, two recovered the
highest number of species, with P = 0.010235 and X = 0.1 or 0.05.
For Uclust, the delimitation that maximized the number of RTS
was with the threshold value of id = 0.97. Finally, the best scoring
parameter combination for Crop (l = 1.0 and u = 1.5) corresponds
to the 3% similarity threshold.

Table 2, presents the efficiency of the five delimitation methods
for five of the datasets using three measures: percentage of RTS,
F-score and number of species. A complete list of results for all
24 datasets is given in paragraph 4.1 in Supplement I. Overall,
mPTP and ABGD scored best in terms of RTS percentage (59%
and 57% on average, respectively) and F-scores (0.828 and 0.819,
respectively) compared to the other three methods (PTP: RTS =
53%, F-score = 0.776, Uclust: RTS = 53%, F-score = 0.79, Crop:
RTS = 52%, F-score = 0.791) (Figure 2). The striking difference
between the five methods is in the number of delimited species. The
novel mPTP method delimited a total of 1190 species which is the
closest to the total number of taxonomic species (1041). In contrast,
PTP inferred 2048 species which is almost twice this number. The
other three methods yielded more conservative species numbers
compared to PTP (Uclust: 1671, Crop: 1663, ABGD: 1412) that
are, however, still notably higher than the mPTP estimates (Figure
2).

When considering only monophyletic species, as one might
expect, the recovery percentage increases substantially for both PTP

Table 2. Percentage of RTS, F-scores and number of delimited species for
the five delimitation methods (mPTP, PTP, Uclust, Crop and ABGD) for five
of the empirical datasets.

mPTP PTP Usearch Crop ABGD

Genus RTS (%)

Amynthas 51 40 44 40 44
Anopheles 41 39 30 31 40
Atheta 64 60 57 55 60
Drosophila 47 51 41 34 53
Philodromus 60 27 47 53 47

F-score

Amynthas 0.784 0.638 0.649 0.674 0.673
Anopheles 0.787 0.704 0.730 0.681 0.730
Atheta 0.839 0.844 0.836 0.832 0.850
Drosophila 0.728 0.559 0.747 0.729 0.765
Philodromus 0.882 0.717 0.812 0.852 0.828

Number of species

Amynthas 64 104 95 91 90
Anopheles 126 218 193 154 118
Atheta 85 100 95 95 91
Drosophila 139 444 183 217 157
Philodromus 21 38 26 20 24

models (82% and 72% on average for mPTP and PTP, respectively),
indicating that polyphyly [we use the term polyphyly in referring
to both paraphyly and polyphyly sensu Funk and Omland (2003)]
is a major contributing factor when taxonomic species are not
recovered (Figure 3 in Supplement I). In particular, the RTS
percentage of either PTP model is highly correlated with the
percentage of monophyletic species in a dataset (Figure 3). The
Pearson coefficient indicates that the correlation is stronger among
the species recovered with mPTP (rmPTP = 0.75, p-value =
2.642e-05) than with PTP (rPTP = 0.62, p-value = 0.001218). The
correlation is also positive for the other three methods (rABGD =
0.63 / p-value = 0.0009327, rUclust = 0.5 / p-value = 0.01294, rCrop
= 0.63 / p-value = 0.0009421) and comparable to PTP but smaller
than for mPTP. Similarly, the slope of the regression line was greater
for mPTP than for the other methods, indicating a steeper linear
relationship between the two variables (Figure 3).

Regarding the confidence of the mPTP delimitations, all
independent MCMC runs appear to converge with an ASDDSV
below 0.01 for all datasets, except for Drosophila (one of the
largest datasets), for which the ASDDSV was 0.048, but still in the
acceptable range for assuming convergence (Ronquist et al., 2012).
The ASV with respect to the ML delimitation was very high for
all datasets, ranging from 72% (Myotis) to 99.8% (Phyllotreta),
indicating that the data support well the ML solution (Table
3 in Supplement I). The accumulated running time for all ten
independent runs (executed sequentially on an Intel Core i7-4500U
CPU @ 1.80GHz) was less than 50 seconds on average across all
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Fig. 3. For each method, we fit a regression line to the points of
correspondence of the percentage of monophyletic species (x-axis) to the
percentage of RTS (y-axis). The Pearson coefficient (r) is given for each
correlation in the corresponding color.

datasets, which corresponds to ∼ 5 seconds per run. For a thorough
run-time comparison between PTP and mPTP (including the ML
method) please refer to paragraph 4.2 in Supplement I.

5 DISCUSSION
Molecular species delimitation has caused mixed reactions within
the scientific community, from those highly enthusiastic about
its potential to accelerate biodiversity cataloging (Blaxter, 2003;
Blaxter and Floyd, 2003) to those very critical about its role
in shaping modern systematics (Bauer et al., 2010; Will et al.,
2005). The main argument between the two conflicting sides is
whether molecular delimitation on its own is sufficient to justify
taxonomic rearrangements (Will et al., 2005). Integrative taxonomy
alleviates this conflict as it, by definition, requires multiple levels
of evidence taking into account various biodiversity characteristics
of an organism to accept potential taxonomic changes. Within this
framework, and in line with the independently evolving species
concept (De Queiroz, 2007) and the phylogenetic species concept,
molecular species delimitation using DNA-barcoding serves as an
excellent tool in modern taxonomy (Tautz et al., 2003; Vogler and
Monaghan, 2007). It can be easily applied to a large range of
organisms regardless of their life stage, gender or prior taxonomic
knowledge, by a broad range of researchers. In addition, barcoding
genes are easily amplified from small tissue samples even from
poorly preserved historical samples (Austin and Melville, 2006).
Furthermore, such an approach might represent the only feasible
approach in biodiversity surveys, as they often comprise a large
number of species, many of which might be unknown or not easily
accessible. Hence, collecting ecological or morphological traits is
often simply not feasible. For historical samples or samples from
inaccessible areas (e.g., deep seas, deserts) barcoding methods are
equally important since the collection of life history traits might

be similarly challenging. This and previous studies (Monaghan
et al., 2009; Esselstyn et al., 2012; Tang et al., 2014; Ratnasingham
and Hebert, 2013) suggest that single-locus barcoding methods
provide meaningful clusters, close to taxonomically acknowledged
species. This makes them useful for approximate species estimation
studies or when more thorough systematic research is practically
impossible.

5.1 (m)PTP
The molecular systematics of the example taxa, vary from well-
studied [e.g., Anopheles (Harbach and Kitching, 2016), Drosophila
(Bächli, 2016)] to scarcely studied (e.g., Xysticus, Clubiona). They
further differ in the number of species, number of sequences per
species, geographic ranges, and nucleotide divergences. Despite
these differences, mPTP outperformed PTP and yields substantially
smaller putative species numbers as well as delimitations that are
closer to the current taxonomy. The assumption of mPTP that per-
species branch lengths can be fit to distinct exponential distributions
increases flexibility and adjustability to more realistic datasets
(e.g., including variable intraspecific diversity). The divergence
of intraspecific diversity patterns may either be due to population
traits and processes (Bazin et al., 2006) or the uneven sampling of
the species (e.g., a highly sampled species from a single location
compared to a species represented by one sample from multiple
locations). The latter is known to decrease PTP accuracy (Zhang
et al., 2013).

The accuracy of (m)PTP strongly correlates with the proportion
of monophyletic species in the underlying phylogeny. Paraphyletic
species will either be delimited into smaller groups or delimited
with other, nested species. Therefore, the recovery rate of
taxonomic species is significantly higher when only considering
the monophyletic species in each dataset. Among the 24 datasets,
the number of monophyletic species ranged from 51% to 94%.
Thus, the lack of monophyly is the primary contributing factor
for not recovering taxonomic species with either PTP model.
The average observed monophyly in our arthropod (76.4%) and
the remaining invertebrate (64.7%) datasets corresponds well to
available estimates for the same groups (73.5% and 61.4%,
respectively) based on a large number of empirical studies (Funk
and Omland, 2003). The same study reports that the most common
reasons for polyphyly are: inaccurate taxonomy, incomplete lineage
sorting, and retrogressive hybridization (Funk and Omland, 2003;
McKay and Zink, 2010). All three effects could apply to the
selected datasets. Nevertheless, only the latter two are relevant to
the efficiency of the algorithm per se, while the accuracy of the
taxonomy is only relevant when it is used as a reference measure.
Polyphyletic species affect both PTP versions in the same way.
The reason for the improved delimitation accuracy of monophyletic
species of mPTP over PTP ie because it can accommodate different
degrees of intraspecific genetic diversity within a phylogeny.

5.1.1 MCMC Sampling The drawback of an ML approach is
that it only provides a point estimate and no information on model
uncertainty. The confidence about a given solution has a substantial
impact in drawing reasonable conclusions. Therefore, we provide
an MCMC method for assessing the plausibility of the ML solution.
In phylogenies comprising hundreds of taxa, it is hard to obtain an
overall support for a particular delimitation hypothesis by visual
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inspection of the tree. To alleviate this problem, at the end of
an MCMC run we calculate the ASV for the ML solution. In
our experiments, the ML delimitations were highly supported by
the ASVs for all datasets, pointing towards a unimodal likelihood
surface for our model (Table 3 in Supplement I). Low ASVs
may be interpreted as low confidence for the given delimitation
scheme, either because another (multi-modal likelihood surface) or
no delimitation scheme (flat likelihood surface) is well supported.
This also indicates a poor fit of the data to the model. The execution
times of the MCMC sampling are almost negligible, regardless of
tree size. Therefore, we can thoroughly sample the delimitation
space even for phylogenies comprising thousands of taxa. For the
large phylogenies of our study (i.e., Drosophila, Anopheles), the
PTP implementation required over 30 hours for the ML optimization
alone, and would require days or even months for the estimation of
support values. Instead, mPTP required less than a minute for both
the ML optimization and the support value estimation.

5.2 Distance-based Methods
Distance-based methods are easy to apply to large datasets as
they need minimal preprocessing effort and computational time.
Their major weakness is that they require either a threshold value
or a combination of parameters associated with the threshold
value, the sampling effort, or the search strategy. Empirical data
show that certain similarity cut-offs (2-3%) correspond well to
the species boundaries of several taxonomic groups (Hebert et al.,
2003; Smith et al., 2005; Hebert et al., 2004); however, these
values are often far from optimal (Lin et al., 2015). Selecting
these parameters is not intuitive and they may only be evaluated a
posteriori based on the expectations of the researcher. Furthermore,
the empirical knowledge for threshold settings is tightly associated
with barcoding genes, and it may not be as useful for other
marker genes. Here, we optimized the parameters for three of
the most popular distance methods (ABGD, Crop and Uclust)
based on the RTS percentage. Despite our substantial effort to
use optimal parameters for the given data, our results show that,
on average, mPTP performs better with respect to F-scores and
RTS percentage. At the same time, it also delimited notably
fewer species. ABGD accuracy was closest to mPTP, while PTP,
CROP, and Uclust performed notably worse. Besides accuracy,
the greatest advantage of mPTP is that it consistently yields
more accurate results without requiring the user to optimize any
parameters/thresholds. Finally, in contrast to (m)PTP, distance
methods ignore evolutionary relationships. Hence, there is no direct
relation between monophyletic species and delimitation accuracy
in similarity based tools. However, polyphyly often reflects recent
speciation while reciprocal monophyly indicates that significant
time since speciation has passed. Consequently, the barcoding gap
should be less pronounced in datasets of recently diverged species.
This justifies that the RTS fraction improves with the number of
monophyletic species.

6 CONCLUSIONS
We presented mPTP, a novel approach for single-locus delimitation
that consistently provides faster and more accurate species estimates
than PTP and other popular delimitation methods. As PTP, mPTP is
mainly designed for analyzing barcoding loci, but can potentially

also be applied to entire organelle phylogenies (e.g. mitochondria,
Qin et al., 2015). In contrast to methods based on sequence
similarity, mPTP does not require any similarity threshold or
other user-defined parameter as input. The limitations of mPTP
are associated with processes that can not be detected neither in
single-gene phylogenies (incomplete lineage sorting, hybridization)
nor in recent speciation events. The novel dynamic programming
delimitation algorithm reduces computation time to a minimum and
allows for almost instantaneous species delimitation on phylogenies
with thousands of taxa. The MCMC sampling provides support
values for the delimited species based on millions (or even billions)
of MCMC generations in just a few seconds on a modern desktop.
The mPTP tool is available both, as a standalone package, and as a
web service.
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