Universal metabarcoding of pico- to mesoplankton reveals seasonal dynamics and a bacterial bloom

Christian Wurzbacher1, 2, 3, Katrin Attermeyer2, 4, Marie Therese Kettner2, Clara Flintrop3, Norman Warthmann3, 5, 6, Sabine Hilt6, Hans-Peter Grossart2, 7, Michael T. Monaghan3, 6

1University of Gothenburg, Department of Biological and Environmental Sciences, Box 461, 40530 Göteborg, Sweden
2Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, 16775 Stechlin, Germany
3Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Str. 6-8, 14195 Berlin, Germany
4Uppsala University, Department of Ecology and Genetics, Limnology, Norbyvägen 18D, 75236 Uppsala, Sweden
5The Australian National University, Research School of Biology, Linnaeus Way, Canberra, ACT 2601, Australia
6Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany
7Potsdam University, Institute of Biochemistry and Biology, Maulbeerallee 2, 14469 Potsdam, Germany

Corresponding authors: Christian Wurzbacher (christian@wurzbacher.cc), Katrin Attermeyer (katrin.attermeyer@ebc.uu.se)

The authors declare no conflict of interest
Abstract

Most studies of biodiversity focus on either macroscopic or microbial communities, with little or no simultaneous study of eukaryotes and prokaryotes. We tested whether a universal metabarcoding approach could be used to study the total diversity and temporal dynamics of aquatic pico- to mesoplankton communities in a shallow temperate lake. The approach revealed significant changes in the relative abundance of eukaryotic and prokaryotic plankton communities over a period of three months. These patterns, based on sequencing reads, fit with counts using traditional methods. We also witnessed the bloom of a conditionally rare bacterial taxon belonging to Arcicella, a genus that has been largely overlooked in freshwaters. Our data demonstrate the potential of universal metabarcoding as a complement to traditional studies of plankton communities, and for long-term monitoring across a broad range of organisms.

Introduction

Microbial communities play key roles in ecosystems and knowledge on their composition and dynamics is critical for understanding ecosystem functions and services. Recently, Barberán et al. (2014) emphasized the importance of studying microbial diversity as an integral part of total biodiversity. In aquatic ecosystems, plankton communities are a mixture of prokaryotes and eukaryotes of a wide range of sizes, and the traditional separation into size classes and domains, with their largely independent research disciplines, impairs a full integration of microbial communities into ecological concepts. Simultaneous studies of diversity of all three domains are rare (< 1% of all studies, SI1) in environmental sequencing surveys (e.g., Steele et al., 2011,
Lima-Mendez et al., 2015) and size pre-selection steps are common in most analyses. Nonetheless, bacterioplankton should exhibit temporal dynamics that are similar to those of macroorganisms (Shade et al. 2013), suggesting that the monitoring of temporal dynamics of all organisms has great potential for identifying ecological interactions (Fuhrman et al., 2015). In addition, metadata on organismal ratios such as eukaryotes : prokaryotes or heterotrophs : phototrophs could be useful for monitoring ecosystem changes. Here we used a universal metabarcoding approach to simultaneously study the dynamics of both prokaryotic and eukaryotic plankton (pico- to mesoplankton) in a lake that exhibits pronounced seasonal plankton dynamics.

Methods

We applied universal metabarcoding to water samples of the eutrophic, shallow temperate Lake Gollin (Kleiner Gollinsee) in northwestern Germany. Lake Gollin was sampled monthly as part of a study of bacteria, phyto- and zooplankton from April 2010 to December 2011 (Brothers et al., 2013; see SI1 for parameters and methods). Briefly, we took monthly samples in spring 2010 (April – June) from littoral water, pelagic water, and water above the pelagic sediment. DNA was extracted from filters (0.22 µm Sterivex; Millipore, Germany) using commercial kits and mechanical bead-beating. We used the V9 region of the ribosomal small subunit for taxa detection (Engelbrektson et al., 2010). Methodological discussions on a related integrative single marker can be found in Parada et al. (2015). Amplicons were constructed and sequenced following the conditions described for pyrosequencing by Hölker et al. (2015) with the modification that we employed the AccuPrime High Fidelity Polymerase (Invitrogen, Carlsbad, USA). Sequences were processed in Mothur (version
Results & Discussion

There was a pronounced shift in dominance from mainly eukaryotes in April to predominantly prokaryotes in June (Fig. 1a; SI2 for taxa browsing). This was accompanied by an increased heterotrophs : phototrophs ratio (SI3). Archaea were not abundant in Lake Gollin, despite their high abundance in some meromictic lakes (Gies et al., 2014). In the winter prior to our study, a significant fish-kill led to a bloom of herbivorous ciliates in April 2010 that was confirmed by our data (Fig. 1d). This likely exerted a very high grazing pressure upon the small plankton (<5 µm; Lischke et al., 2016). Potentially, the abrupt disappearance of ciliates in May – June (Fig. 1d) following increasing crustacean abundances (Hilt et al., 2015) reduced the abundance of algae and bacterial grazers. This may have opened a niche for the detected bacteria, in particular of the genera Arcicella and Variovorax (see below). Our molecular data complement traditional counting data, following the trend of the sum parameters of phyto-, zoo- and bacterioplankton (SI3). The approach may therefore have the potential to follow dynamics of entire plankton communities in a single analysis.

Bacterial OTUs of the genera Arcicella and Variovorax were major representatives of the bacterial "bloom" that dominated the lake in June. Arcicella was more abundant in the upper water layers and potentially...
colonized the water from the neuston, whereas *Variovorax* was more abundant above the sediment suggesting colonization from the sediment (Fig. 1b, c).

Interestingly, *Arcicella* was rare in April and May (<0.2%). There are few reports of blooms of rare bacterial taxa (e.g., Gilbert et al., 2012) and causes for single taxa bacterial blooms are often connected to phytoplankton events (Bizic-Ionescu et al. 2014). *Arcicella* re-occurred the following year (Fig. 2) and we were able to relate its appearance to the phyto- and zooplankton dynamics (SI1). In contrast to the *Vibrio* sp. bloom described by Gilbert *et al.* (2012), our *Arcicella* OTU can be classified as conditional/recurrent rare taxa (Lynch and Neufeld, 2015). Searching through existing freshwater data sets, we found *Arcicella* to be a prevalent freshwater lineage on a global scale, especially in lotic ecosystems. *Arcicella* was reported as the second most abundant OTU (6.8%) in all large circumpolar streams (Crump *et al*., 2009). In other studies, *Arcicella* was detected but not explicitly reported. For example, a single *Arcicella* OTU was among the dominant taxa in the Danube River, comprising 2% ± 2% (Savio pers. comm.; Savio *et al*., 2015) and a single *Arcicella* OTU reached 12 ± 4% in a small turbid glacial lake (Peter pers. comm.; Peter and Sommaruga, 2016). Despite those previous appearances, their autecology has never been discussed, suggesting that we have probably revealed a thus far unrecognized major freshwater lineage.

Using universal metabarcoding we could monitor major changes in freshwater pico- to mesoplankton with a single water sample analysis. Changes in relative abundance of OTUs matched the seasonal dynamics that have previously been reported for this lake. The discovery of a conditionally rare taxon supports the observed plankton dynamics for the bacterioplankton, since such taxa are of a
disproportional significance for the overall community dynamics (Shade et al., 2014). Integrative analysis may help to answer broader ecological questions related to the role of keystone species, ecosystem resilience and resistance, and cross-domain interactions of species (Lima-Mendez et al., 2015). Universal metabarcoding represents a valuable means of studying plankton dynamics in aquatic systems and shows promise for long-term monitoring.

Acknowledgements

We would like to thank Uta Mallock for chemical analysis, Susan Mbedi for assistance in sequencing and Marie Jeschek for assistance in data processing. This is publication #027 of the Berlin Center for Genomics in Biodiversity Research. Financial support was provided by two projects of the Pact for Innovation and Research of the Gottfried Wilhelm Leibniz Association “Terralac” and “TEMBI”. R. Tischbier (Stiftung Pro Artenvielfalt) kindly provided access to the lake.

Conflict of interest

The authors declare no conflict of interest.

Supplementary information is available

References

Bižić-Ionescu M, Amann R, Grossart, HP. (2014). Massive regime shifts and high

Determinants of community structure in the global plankton interactome.

Science 348(6237): 1262073.

Figure Legends

Figure 1. Spatial and temporal changes of microorganisms in Lake Gollin from three samplings (April, May, June) and locations (littoral, pelagic, and above sediment) displaying abundances (mean ± standard deviation) based on a rarefied OTU matrix (1744 reads/sample) of (a) all three domains with a total of 1307 bacteria, 388 eukaryote, and 190 archaea OTUs in the dataset; (b) the dominant Arcicella OTU; (c) the dominant Variovorax OTU and (d) the sum of all ciliate OTUs (70 OTUs).

Figure 2. Seasonal appearance of Arcicella assessed via a PCR assay and evaluated based on the band intensity in four categories: 0 = no product, 1 = very weak product, 2 = weak product, 3 = medium product, 4 = strong product. Arcicella exhibited pronounced maxima and minima over the course of the 2 years and appeared in the particle-attached (> 5 µm) and free-living fraction (0.2 - 5 µm).