Regulation of global transcription in *E. coli* by Rsd and 6S RNA

Avantika Lal¹, Sandeep Krishna², and Aswin Sai Narain Seshasayee¹#

¹ National Centre for Biological Sciences, TIFR, Bangalore 560065, Karnataka, India; ² Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, TIFR, Bangalore 560065, Karnataka, India

#aswin@ncbs.res.in
Abstract

In *Escherichia coli*, the housekeeping sigma factor σ^{70} directs RNA polymerase to transcribe growth-related genes, whereas the alternative sigma factor σ^{38} directs it to transcribe stress response genes during stationary phase. Two molecules hypothesized to regulate RNA polymerase activity are Rsd, which sequesters free σ^{70}, and 6S RNA, which sequesters the RNA polymerase-σ^{70} holoenzyme. Despite multiple studies, their function remains controversial. Here we use genome-wide expression studies in five phases of growth, along with theoretical modeling, to investigate the functions of Rsd and 6S RNA. We show that 6S RNA and Rsd act as global regulators of gene expression throughout bacterial growth, and that both increase transcription of σ^{38} dependent genes. We also find several instances of crosstalk between 6S RNA and Rsd, and propose a model in which this crosstalk is important in regulating sigma factor competition.

Importance

Bacteria possess a single RNA polymerase which transcribes all genes. This RNA polymerase is a crucial point for regulation, as changes in its level, distribution or activity could have rapid and widespread effects on gene expression. In the model bacterium *E. coli*, Rsd and 6S RNA are two abundant molecules that regulate the activity of RNA polymerase. Here we identify genes...
regulated by Rsd and 6S RNA in five phases of bacterial growth and suggest a model to explain their regulatory activity.

Introduction

In bacteria, all transcription is dependent on a single core RNA polymerase. This multisubunit enzyme (αββ'ω, referred to as E) cannot bind specifically to promoters. This ability is conferred by a sigma (σ) factor, which binds to E forming an Eσ holoenzyme, and directs it to transcribe RNA from specific promoters.

Seven sigma factors – σ^70 (RpoD), σ^38 (RpoS), σ^32, σ^54, σ^28, σ^24 and σ^19 - have been identified in the model bacterium Escherichia coli (1). In vivo studies have shown that when one sigma factor is overproduced, underproduced, or mutated, not only is there a change in transcription of its target genes, but increased activity of one sigma factor decreases the activity of others and vice-versa (2–4). In vitro assays have demonstrated competition between sigma factors when E is limiting (3–6). Though it was previously reported that the cellular concentration of E exceeded that of sigma factors (6, 7), recent quantitation has shown that sigma factors exceed E under common culture conditions (8, 9), and therefore compete to bind to limited E.

σ^70 (RpoD) is the housekeeping sigma factor, directing transcription of genes essential for growth and proliferation. The alternative sigma factors are produced under specific conditions, and
direct transcription of genes required under those conditions. The major alternative sigma factor is σ^{38} (RpoS). This is present at low concentration during exponential growth, but nevertheless regulates several hundred genes (10, 11). Upon entry into stationary phase, while the concentrations of E and σ^{70} show little change, σ^{38} accumulates (9, 12, 13; Table 1) and directs transcription of genes responsible for multiple stress tolerance (14–18). However, σ^{70} remains the most abundant sigma factor even in stationary phase, and has higher affinity for E than any other sigma factor (6, 9, 19, 20), implying that additional regulators are needed for σ^{38} and other sigma factors to compete effectively with σ^{70}.

Such regulators are known. The Crl protein binds to σ^{38} and increases its affinity for E, and promotes transcription by the Eσ^{38} holoenzyme at some promoters (21–23). The nucleotide ppGpp increases the ability of alternative sigma factors to compete with σ^{70} (3). However, ppGpp is produced transiently on entry into stationary phase (24), and Crl has also been shown to decrease during extended stationary phase (21).

On the other hand, two regulators - the protein Rsd and the non-coding 6S RNA - act on σ^{70}. Rsd binds to σ^{70}, sequestering it from E, and inhibits Eσ^{70}-dependent transcription at several promoters in vitro (25). An Rsd null strain showed increased transcription from a σ^{70} dependent promoter, and reduced transcription from a σ^{38} dependent promoter, in stationary phase, whereas Rsd overexpression had the opposite effect (26). It was hypothesized that in stationary phase, Rsd reduces Eσ^{70} formation, and, by freeing E to bind σ^{38}, increases Eσ^{38} formation. However, a
microarray experiment found no significant difference in gene expression between an Rsd
knockout and wild-type *E. coli*, and even comparison of the knockout with an Rsd
overexpressing strain found changed expression of only a few σ^{38}-dependent genes (27). All
effects of Rsd *in vivo* were observed only during stationary phase. This was initially attributed to
low Rsd levels during exponential phase. However, recent quantitation has shown that Rsd is
present at ~50% of the level of σ^{70} in exponential phase and ~90% in stationary phase (9) –
raising the question of why no change in expression is seen in its knockout.

6S RNA is a 184-nucleotide non-coding RNA expressed from the ssrS gene. 6S RNA binds to
the Eσ^{70} holoenzyme (28). It has been shown to block Eσ^{70} binding to a target promoter (29), and
inhibit transcription from several promoters *in vitro* and *in vivo* (24, 28, 30–32). A 6S RNA
knockout showed increased expression from some Eσ^{70} promoters containing extended -10
elements, and reduced expression from a few Eσ^{38} promoters, in stationary phase (32). It was
suggested that 6S RNA blocks Eσ^{70} from binding to certain target promoters, reducing their
transcription, and that sequestration of Eσ^{70} by 6S RNA allows σ^{38} to compete more effectively
for E, increasing transcription by Eσ^{38}. An alternative hypothesis was that 6S RNA regulates a
trans-acting factor important for Eσ^{38} activity (32). A later study showed that 6S RNA regulates
hundreds of genes in stationary phase, and, by mutating promoter sequences, showed that an
extended -10 element and a weak -35 element could make a promoter sensitive to 6S RNA (30).
But contrary to these, another expression study found no correlation of 6S RNA sensitivity with
promoter sequence or sigma factor preference (33), and there was little overlap between the
regulated genes found in the two experiments.

Rsd and 6S RNA are present at high concentrations during growth, increase in stationary phase,
and are thereafter at high levels (9, 25, 28). Yet their effects on gene expression, especially
during growth, remain controversial. Both have been hypothesized to reduce Eσ^70 and increase
formation of Eσ^38; however, they act at different levels, one sequestering free σ^70 and the other
sequestering the Eσ^70 holoenzyme. We must therefore ask what impact this difference has on their
regulatory effects. Do Rsd and 6S RNA possess similar regulatory functions?

Here, we present a genome-wide investigation of the functions of Rsd and 6S RNA in E. coli. We
used RNA-seq to identify genes regulated by Rsd and 6S RNA in five phases of growth, and
demonstrated that both function as global regulators of transcription during exponential as well
as stationary phase. We showed that both increase transcription of σ^38 target genes, with 6S RNA
also regulating hundreds of σ^70 targets, including genes encoding subunits of RNA polymerase,
ribosomes and other global regulators, and substantiated these findings by qRT-PCR and western
blotting. We found evidence of substantial crosstalk between Rsd and 6S RNA, with each
regulating the other's expression and non-additive effects on over a thousand genes. Finally, we
developed a mathematical model of sigma factor competition in E. coli, which suggested a
theoretical basis for our experimental results.
Results

RNA-seq to identify genes regulated by Rsd and 6S RNA

Figure 1A shows a schematic of the binding activity of 6S RNA and Rsd. Rsd sequesters σ^{70} and prevents it from binding to core RNA polymerase (E), while 6S RNA binds to the Eσ^{70} holoenzyme and prevents it from binding to promoters. To find their effects on gene expression, we carried out RNA-seq to identify genes regulated by Rsd and/or 6S RNA in five growth phases.

Table S1 lists strains and plasmids used in this study. Five strains: E. coli K-12 MG1655 (Wild-type), Rsd knockout (Δrsd), 6S RNA knockout (ΔssrS), 6S RNA-Rsd double knockout (ΔrsdΔssrS), and σ38/RpoS knockout (ΔrpoS) were used for RNA-seq. These strains had similar growth rates in M9 glucose (Figure S1). RNA-seq was performed at five growth phases: early exponential (EE), mid-exponential (ME), transition to stationary (TS), stationary (S), and late stationary (LS; time points in Methods).

Rsd increases σ38/RpoS activity throughout growth

We defined differentially expressed genes as genes whose expression changed >=2-fold in a mutant strain relative to the wild-type, with an FDR-adjusted p-value < 0.05. Using these criteria,
the Δrsd strain showed only 16 differentially expressed genes. These included several non-coding RNAs (ryfD, sokA, oxyS, sroH, sibD) which were increased 2-6 fold in Δrsd during stationary phase. The expression of 6S RNA was also altered in Δrsd; 6S RNA was increased to more than twice the wild-type level in stationary phase, but in mid-exponential phase was reduced to about half its wild-type level (Table S2).

As very few genes were differentially expressed in Δrsd, we looked for smaller changes. We found that in all growth phases, there was a trend for genes whose expression was significantly reduced (>=2-fold, p < 0.05) in ΔrpoS to also display slightly reduced expression in Δrsd. This is illustrated in Figure 1B-C. These boxplots show the distribution of log₂ fold change in gene expression in Δrsd relative to wild-type, for all genes. The central line represents the median, box edges represent the inter-quartile range, and the whiskers represent 1.5 x IQR. For genes whose expression is significantly reduced in ΔrpoS, the distribution is shifted downward, indicating a tendency toward reduced expression (log₂ fold change < 0). The upper edge of the IQR is below 0, indicating that ~75% of the genes whose expression was significantly reduced in ΔrpoS also showed reduced expression in Δrsd. Plots for other growth phases are in Figure S2A.

This reduced expression was less than twofold in magnitude and so was not seen when searching for differentially expressed genes directly in Δrsd. Though these fold changes are small, we consider them important for several reasons. They represent a consistent and highly significant (Wilcoxon test p < 10⁻¹⁵ in all growth phases except LS) decrease in expression across hundreds
of rpoS affected genes, in five growth phases. The average overlap between the set of rpoS-regulated genes in successive growth phases is only 54%; so it is not a single set of genes whose expression was reduced in Δrsd, but a substantially different set in each growth phase. The Δrsd samples also showed high inter-replicate correlation in all growth phases (Table S3). This trend of decreased expression held true when only previously reported σ^{38} targets (18) were considered (Figure S2B). Conversely, genes whose expression was increased >=2-fold in ΔrpoS showed increased expression in Δrsd, during the early exponential, mid-exponential and stationary phases (Figure S2C). However, expression of genes under the control of constitutive σ^{70} target promoters (34) was not substantially altered in any phase (Figure S3).

Thus the Rsd knockout behaved like a σ^{38} knockout, only with smaller changes in gene expression. As western blots in stationary phase did not show changed σ^{38} protein level in Δrsd (Figure S4), this is likely due to reduced binding of σ^{38} to E. Therefore, although Rsd binds to σ^{70}, we hypothesize that its function is to increase σ^{38} binding to E, and therefore transcription of σ^{38} targets, in exponential as well as stationary phase.

6S RNA regulates distinct sets of genes in all phases of growth

What role does the Eσ^{70} - sequestering 6S RNA play in gene regulation? Is its function similar to that of the σ^{70}-sequestering Rsd? Our RNA-seq showed that the 6S RNA knockout (ΔssrS) was
very different from the Rsd knockout. To begin with, it showed >=2-fold differential expression of a total of 447 genes.

Figure 2A and B show that there was little overlap between genes differentially expressed in ΔssrS in successive growth phases. In particular, 186 of 221 genes regulated by 6S RNA during late stationary phase were regulated only in that phase. The only genes upregulated >=2-fold in ΔssrS throughout growth were cusR, encoding a copper-sensing regulator, and its target genes (cusCFB) encoding a copper/silver efflux system. The only gene downregulated >=2-fold in ΔssrS throughout growth was fau (ygfA), which is downstream of 6S RNA in the same operon and encodes a putative 5-formyltetrahydrofolate cyclo-ligase. fau expression was increased when 6S RNA was overexpressed from a plasmid in a wild-type background (Figure 2C and D), indicating that this was at least in part a regulatory effect of 6S RNA and not merely a polar effect. The mechanism is unclear; however, it could indicate an autoregulatory role of 6S RNA.

During exponential phase, the expression of several genes encoding amino acid transporters (artM, artI, hisP, hisQ, hisJ, hisM, tdcC) and genes for amino acid biosynthesis (argH, argB, thrA, thrB, thrC, asnB, glyA) was increased in ΔssrS, while expression of genes involved in stress responses (rmf, appY, yadC, ybcM, yciF, gadW, ydeI, yodD, dps, hdeA, hslV, oppA, osmE, dosC) was reduced. These functional changes are consistent with previous reports (24, 33), though most of the specific genes are different. In LS phase, genes encoding global transcriptional regulators including crp, crl and hha and genes linked to the TCA cycle (sdhD,
sdhC, gltA, aceB, ppc, sucA) were upregulated, while downregulated genes included iraP, csrB, and 9 subunits of NADH dehydrogenase.

While the effects of the ΔssrS deletion appeared largely growth phase-dependent, we observed certain patterns throughout growth. These are discussed in the following sections.

6S RNA increases σ38/RpoS activity throughout growth

Like Δrsd, the ΔssrS strain showed reduced expression of σ38 target genes (Figure 3A and B, Figure S5, Wilcoxon test p < 10^-15 in all growth phases except late stationary). This was not due to reduced σ38 protein, as western blots in stationary phase showed that the ΔssrS strain had higher σ38 protein than the wild-type (Figure S4). On the other hand, expression of genes under constitutive σ70 promoters was slightly increased in the mid-exponential, transition to stationary and late stationary phases (Figure S6).

6S RNA regulates the expression of RNA polymerase, ribosomal genes, and Rsd

Figure 4A shows that the wild-type expression of 6S RNA increased in successive growth phases, as reported (28). Therefore, the effect of 6S RNA on its target genes should be greater in each successive growth phase. Indeed, with the exception of the transition to stationary phase, the number of 6S RNA regulated genes increased with growth phase (Figure 2A and B). A
previous study (24) showed increased ppGpp in a 6S RNA knockout during the transition to stationary phase; consistent with this, we observed slightly increased expression of ppGpp-activated genes and reduced expression of ppGpp-repressed genes in the ΔssrS strain during this phase (Figure S7). Since ppGpp also favors the competition of alternative sigma factors with σ70 (3), increased ppGpp may reduce the effects of the ΔssrS deletion during this phase.

Are there genes where 6S RNA has a dose-dependent effect throughout growth, increasing with its expression level? Of 447 6S RNA regulated genes, 36 show such an effect, with the magnitude of their repression or activation by 6S RNA increasing in each successive growth phase (Figure S8). For example, Figure 4B shows the log$_2$ fold change in expression of rpoB (encoding the β subunit of core RNA polymerase) in ΔssrS. rpoB expression was slightly reduced in mid-exponential phase, and the magnitude of this reduction increased with time, as the level of 6S RNA in the wild-type increased. Reduced RpoB expression was validated in stationary phase by qRT-PCR (Table S7) and western blotting (Figure S9). Since excessive Eσ70 inhibits rpoB transcription (35), we suggest that deleting 6S RNA leads to higher free Eσ70, which proportionally represses rpoB transcription. Since RpoB is the limiting subunit for the formation of core RNA polymerase (9), this implies that the cell compensates for the loss of 6S RNA by reducing RNA polymerase synthesis.

Similarly, we observed changed expression of genes encoding ribosomal proteins (Figure 4C). Decreased expression of these genes in a 6S RNA knockout during stationary phase was reported...
previously (33); here, their expression was increased in ΔssrS during early and mid-exponential phases, then decreased steadily. 6S RNA also represses some genes similarly. For example, Figure 4D shows that crl expression is slightly increased in ΔssrS during early exponential phase, and the magnitude of this increase keeps growing, paralleling the increase in 6S RNA in the wild-type. As with the effect of reducing RNA polymerase synthesis to compensate for the loss of 6S RNA, increasing σ^{38} protein and Crl may be a means to compensate for reduced Eσ^{38} activity in ΔssrS bacteria.

Since we observed that Rsd regulated 6S RNA expression, we checked whether 6S RNA in turn regulated Rsd expression. Our RNA-Seq showed that rsd was not differentially expressed in ΔssrS. To check if 6S RNA regulated Rsd post-transcriptionally, we added a 3xFLAG tag to the C-terminal of the Rsd protein. Indeed, western blots showed that the expression of 3xFLAG-tagged Rsd was reduced in the ΔssrS background relative to wild-type, in both mid-exponential and stationary phases (Figure 4E).

Finally, though 6S RNA binds to Eσ^{70}, its effects are highly promoter-specific (24, 30, 32, 33). Therefore we asked what features of a gene might be responsible for its response to 6S RNA. However, we did not observe any link between 6S RNA sensitivity and an extended -10 or weak -35 promoter sequence as reported in (30) (Figure S10). Instead, during stationary phase, the 6S RNA sensitivity of a gene was correlated with its expression level. Genes downregulated in ΔssrS tended to be highly expressed in the wild-type, and genes upregulated in ΔssrS had low
expression in the wild-type (Figure 4F). It was also correlated with the occupancy of the gene promoter by RNA polymerase, measured by ChIP-chip in (36) (Figure 4G). Thus, our data support a model in which sequestration of RNA polymerase by 6S RNA primarily represses promoters that are weak in binding to RNA polymerase.

The Rsd/6S RNA double knockout shows differential expression of a distinct set of genes

We have discovered several instances of crosstalk between 6S RNA and Rsd; apart from the fact that both sequester σ^{70} in different forms, each regulates the other's expression, and both favor the activity of σ^{38}. We therefore asked whether the double knockout of Rsd and 6S RNA showed effects on gene expression distinct from the single knockouts.

The ΔrsδΔssrS strain showed several of the features described for ΔssrS (Figure S11 and S12). In addition, in each growth phase, hundreds of genes were differentially expressed in the double knockout relative to the wild-type. This far exceeded the number of differentially expressed genes in both single knockouts, suggesting significant crosstalk between the two regulators.

Figure 5A and B show genes that showed differential expression in the double knockout, but less than twofold change in both single knockouts added together; there were 1780 such genes in total. These included genes encoding DNA Gyrase and Topoisomerase I, which maintain DNA
supercoiling and regulate expression of hundreds of genes (37), the nucleoid-associated proteins HU, H-NS and StpA, the global transcriptional regulators ArcA, LRP and IHF, the small RNA chaperone Hfq, and the F_0-F_1 ATP synthase.

A theoretical model suggests possible explanations for the behavior of Rsd and 6S RNA

Our RNA-Seq demonstrated that Rsd and 6S RNA are regulators of sigma factor competition and gene expression at a global scale; however, several results appear counter-intuitive. How does Rsd, which sequesters σ^{70}, increase transcription of σ^{38} target genes without as much effect on σ^{70} target genes? How does 6S RNA, which sequesters not only σ^{70}, but also the core RNA polymerase which is required for transcription by all sigma factors, nevertheless increase transcription by σ^{38}?

To suggest possible answers, we constructed a mathematical model of transcription during stationary phase, using parameters from literature (Table 2.2). We focused on stationary phase as that is when σ^{38}, 6S RNA and Rsd are at high concentrations. Our model is similar in structure to previous studies (8, 38), that have attempted to model sigma factor competition. However, this is the first model of stationary phase conditions and the first to include both 6S RNA and Rsd. Consequently, our results differ from previous models.
A schematic of reactions in the model is given in Figure 6A. Core RNA polymerase (E) binds to sigma factors (σ^{70} and σ^{38}) forming holoenzymes ($E\sigma^{70}$ and $E\sigma^{38}$). Holoenzymes recognize target promoters (P_{70} and P_{38} respectively) and initiate transcription, releasing the sigma factor. The elongating RNA polymerase (E_{e70} and E_{e38}) transcribes until released. Holoenzymes and E can also bind to DNA non-specifically. We focus on the steady state of this model, determined by equations (1) - (4) and (8) – (17) in Methods.

To understand how Rsd and 6S RNA regulate competition between sigma factors for RNA polymerase, we initially modeled the formation of $E\sigma^{70}$ and $E\sigma^{38}$ holoenzymes in the absence of DNA. This is represented by the shaded area in Figure 6A. The corresponding steady-state equations are (1) - (9) in Methods.

Figure 6B(i) depicts what happens when Rsd is added to a system containing only E, σ^{70} and σ^{38}. We emphasize that this represents the steady-state behavior of the model. That is, each value of Rsd on the x-axis corresponds to a separate 'run' of the model where we compute the steady-state for those fixed parameter values, before moving on to the next Rsd value.

Initially, our model predicts that ~94% of total E would be bound to σ^{70}. As Rsd is increased, it sequesters σ^{70}, reducing $E\sigma^{70}$ formation. This allows more E to bind to σ^{38} and thus increases the formation of $E\sigma^{38}$ by an equal amount, consistent with previous predictions of the function of Rsd (26). However, Figure 6B(ii) predicts that when 6S RNA is present in the system, Rsd...
increases σ^{38} with relatively little effect on σ^{70}. How? This paradoxical result can be understood with Figure 6B(iii), which shows that the concentration of the 6S RNA–σ^{70} complex decreases as Rsd is increased. When 6S RNA is present, increasing Rsd still reduces σ^{70} association; however, the reduction in σ^{70} is partially compensated for by the release of σ^{70} from its complex with 6S RNA, and so there is little change in the overall σ^{70} level.

Next, we included DNA in the model (represented by the complete schematic in Figure 6A) and observed how Rsd's effects on holoenzyme formation lead to changes in transcription. Here, we modeled 200 promoters specific to each sigma factor. As expected from Figure 6B(ii), the model predicts that Rsd increases the rate of transcription by σ^{38} with less effect on σ^{70} transcription (Figure 6B(iv)).

Apart from losing Rsd, our Δrsd strain also displayed a ~2.3-fold increase in 6S RNA during stationary phase. Figure 6B(v) shows the predicted rate of transcription from σ^{70} and σ^{38} target promoters in the wild-type and when Rsd = 0. The third pair of bars is an approximation of conditions in the Δrsd strain, where 6S RNA is increased 2.3-fold. We see that increased expression of 6S RNA could reduce σ^{70} dependent transcription in the Δrsd strain to almost the wild-type level, such that the main observable effect of knocking out Rsd would be reduced transcription by σ^{38}.
We therefore hypothesize that in the presence of 6S RNA, Rsd increases the formation of σ^{38} and therefore transcription of σ^{38} target genes, with less effect on σ^{70}, consistent with both our RNA-seq and a previous study (27). We note that increasing Rsd is predicted to be a considerably more effective way to increase σ^{38} transcription than increasing σ^{38} itself (Figure S13).

What is the effect of 6S RNA? Again, we initially modeled the effect of 6S RNA on sigma factor competition without DNA. Figure 6C(i) predicts that 6S RNA sequesters σ^{70}, reducing the available E for binding to both sigma factors, thus inhibiting formation of both holoenzymes. By sequestering σ^{70}, 6S RNA also reduces the ratio of σ^{70} to σ^{38}, and so the decline is sharper for σ^{70}. Similarly, Figure 6C(ii) shows the predicted effect of 6S RNA on transcription; 6S RNA decreases the rate of transcription by both holoenzymes, though the decline is greater for σ^{70}.

However, our RNA-seq showed that deleting 6S RNA actually results in reduced transcription of σ^{38} target genes, i.e. 6S RNA causes increased transcription by σ^{38}. How is this possible? A 10-fold increase or decrease in any of the parameters was not sufficient to reproduce this observation.

Apart from losing 6S RNA, our ΔssrS strain also displayed changed levels of Rsd, RpoB, and σ^{38}. Figure 6C(iii) shows the predicted rate of transcription from σ^{70} and σ^{38} target promoters in the wild-type and when 6S RNA = 0. The third pair of bars is an approximation of conditions...
in the ΔssrS strain (based on western blots in Figure 4, Figure S4 and Figure S9). Here, Rsd and E are reduced to 50% of their wild-type levels and σ^{38} is increased by 50%. We see that Eσ^{38} transcription is now reduced to less than the wild-type level. In fact, within the default parameters of our model, reducing Rsd alone from 10.4 μM to 8 μM is sufficient to lower Eσ^{38} transcription in the 6S RNA knockout below its wild-type level.

We also observed increased crl mRNA in ΔssrS. We have not modeled this due to lack of quantitative data on Crl. However, if the change in mRNA corresponds to increased Crl protein, it could partially mitigate the effect of reduced Rsd in the ΔssrS strain.

Thus, from our base model we can make the strong claim that the binding reactions of Rsd and 6S RNA shown in Figure 6A cannot explain the reduced transcription of Eσ^{38} target genes in the ΔssrS strain. However, adding reduced Rsd levels to the model is sufficient. We therefore hypothesize that the reduced Eσ^{38} transcription in the 6S RNA knockout could be due to indirect effects, primarily via Rsd.

The predictions of this model would ideally be validated by in vitro transcription experiments with Rsd and 6S RNA in varying concentrations; to our knowledge, such studies have never been carried out. However, such experiments are necessarily limited to a few promoters, and previous studies have not succeeded in distinguishing specific transcription inhibition by 6S RNA in vitro. Some predictions may be testable by looking at distributions of gene expression in vivo; for
instance, increasing Rsd expression in ΔssrS back to the wild-type level should largely mitigate the reduced expression of σ^{38} target genes.

Discussion

6S RNA and Rsd have long been known to regulate RNA polymerase in *E. coli*. It was originally hypothesized, based on expression studies using single promoters, that Rsd reduces the association of E with σ^{70} and correspondingly increases its association with σ^{38} (26). However, a microarray experiment failed to find any significant effect of deleting Rsd (27). All studies so far have found effects of Rsd only in stationary phase.

Here we report for the first time that Rsd regulates gene expression from early exponential to stationary phase. Though it sequesters σ^{70}, our data leads us to hypothesize that its primary function is to increase the association of the alternative sigma factor σ^{38} with RNA polymerase. Based on theoretical modeling, we suggest that this is due to the presence of 6S RNA, which minimizes the effect of Rsd on Eσ^{70} levels. Since Rsd overexpression has been seen to increase transcription directed by σ^{24} and σ^{54} in a ppGpp^{0} background (4, 39), Rsd may generally assist alternative sigma factors in associating with RNA polymerase, under suitable conditions.

6S RNA is more complex, regulating hundreds of genes controlled by multiple sigma factors. We identified 447 6S RNA regulated genes, of which 203 are upregulated in the 6S RNA knockout,
243 are downregulated, and 1 (rzoD) is upregulated in EE phase but downregulated in LS phase. However, our data does not show associations between promoter sequence and 6S RNA susceptibility as previously reported (30). Our data has somewhat greater similarity with that of (33), who reported reduced expression of rpoB and ribosomal genes in ΔssrS in stationary phase, and observed increased ppGpp without an increase in relA; however, there is still relatively low overlap in the list of 6S RNA regulated genes (46 genes). This is likely because these studies were carried out in different time points and media from ours. Even within our dataset, there is little overlap between genes regulated by 6S RNA at different time points. Therefore, it seems that there is generally a large difference in the 6S RNA regulon under different conditions. Nevertheless, certain patterns stand out; 6S RNA increases σ^{38} mediated transcription, and modulates the expression of the transcription and translation machinery. This supports a model in which 6S RNA acts as a background-level regulator operating on RNA polymerase, with gene-level outcomes depending strongly upon the cellular environment; this could potentially involve DNA topology, transcription factors, and other RNA polymerase-binding factors, all of which vary with growth phase (40).

Previous work using a few promoters (32) had suggested that 6S RNA might increase transcription by Eσ^{38} during stationary phase. It was suggested that this was either a direct effect of 6S RNA, allowing σ^{38} to compete more effectively for E, or indirect, by means of a trans-acting factor important for σ^{38} activity. However, another study (33) found no evidence of this
We show that 6S RNA increases transcription by Eσ^{38} globally, from early exponential to stationary phase, and suggest that it does so through indirect effects, such as increasing Rsd.

It has been asked, given 6S RNA's function as a global regulator, why its deletion does not cause a growth defect. Our data, along with others (24, 33), shows multiple feedback effects in the ΔssrS strain, where the cell reduces RNA polymerase expression to compensate for the loss of 6S RNA, and increases σ^{38} and possibly Crl to compensate for reduced Eσ^{38} activity; increased ppGpp may play a part during the TS phase. Our data also shows that in LS phase, 6S RNA represses ppk, responsible for the synthesis of inorganic polyphosphate - which increases σ^{38} expression and inhibits transcription by Eσ^{70} (41). In stationary phase, the Rsd/6S RNA double knockout shows reduced expression of DNA supercoiling enzymes; supercoiling regulates promoter binding by Eσ^{70} and Eσ^{38} (42, 43); in ME phase, it shows reduced expression of the gene encoding the small RNA chaperone Hfq, which, among many functions, increases σ^{38} expression (44). These examples, illustrated in Figure S14, demonstrate that RNA polymerase activity is very carefully controlled, and 6S RNA is connected to multiple pathways involved in this process.

We also report for the first time that 6S RNA positively regulates the expression of its downstream gene fau. The ssrS-fau operon arrangement is conserved in α- and γ-proteobacterial genomes as well as some β-proteobacteria (45), suggesting that it is functionally relevant, perhaps for linking fau expression to 6S RNA, and thus to the nutritional state of the cell. As the
fau gene product has been linked to folate metabolism (46), biofilm formation (47) and persister cell formation (48), further investigation of the link between 6S RNA and fau is warranted.

Lastly, we report that 6S RNA and Rsd regulate each other. Rsd activates 6S RNA expression in mid-exponential phase and inhibits it in stationary phase, and 6S RNA activates Rsd protein expression in both mid-exponential and stationary phase. In addition, 1780 genes across 5 growth phases – almost 40% of the genes in the cell - are differentially expressed in the 6S RNA-Rsd double knockout but not in the single knockouts added together, indicating some degree to which 6S RNA and Rsd can compensate for each other's absence.

Given that 6S RNA homologs are widespread in bacteria, co-occurring with Rsd and with other RNA polymerase regulators such as the actinobacterial RbpA, and many bacterial species have two or three 6S RNA homologs with different expression patterns and potentially different binding partners (45, 49), we suggest that studying the relationships between these regulators of RNA polymerase will give greater insights into transcriptional control across the bacterial kingdom.

Materials and Methods

Growth conditions
Luria-Bertani broth and agar (20 g/L) were used for routine growth. M9 defined medium (0.6% Na₂HPO₄, 0.3% KH₂PO₄, 0.05% NaCl, 0.01% NH₄Cl, 0.1 mM CaCl₂, 1 mM MgSO₄, 5 x 10⁻⁴% Thiamin) supplemented with 0.5% glucose and 0.1% casamino acids was used for RNA-seq and validation. During strain construction, ampicillin or kanamycin were used at final concentrations of 100 μg/ml and 50 μg/ml respectively.

Strain construction

Single gene deletions were achieved by the λ Red recombination system (50), using plasmids pKD46 and pKD13 and specific primers (Table S4). This method introduced a kanamycin resistance cassette into the chromosome. Knockout strains were selected on LB Kanamycin plates. In the rsd knockout, the resistance cassette was removed by FLP-mediated site-specific recombination using plasmid pCP20. The ΔrsdΔssrS double knockout was generated by P1 transduction from single knockouts (51). The 3x-FLAG epitope was added to the C-terminus of Rsd by a PCR-based method using plasmid pSUB11 as template (52), and introduced onto the MG1655 chromosome by λ Red recombination using specific primers (Table S5). The ssrS knockout was moved into this strain using P1 transduction. Strain constructions were verified by PCR using specific primers (Table S6) and Sanger sequencing.

RNA extraction and mRNA enrichment
Overnight cultures in M9 glucose were inoculated in 100 mL fresh M9 glucose to a final OD$_{600}$ of 0.02 and incubated at 37 °C with shaking. Two biological replicates were performed for each strain. Cells were collected by centrifugation at the early exponential (OD$_{600}$ ~0.3), mid-exponential (OD$_{600}$ ~0.8), transition to stationary (OD$_{600}$ ~1.6), stationary (16 hrs, OD$_{600}$ ~2), and late stationary (48 hrs, OD$_{600}$ ~1.6) phases of growth. RNA was extracted using TRIzol (Invitrogen), following the manufacturer's protocol. Total RNA was treated with DNase I (Invitrogen, 18068-015) according to the manufacturer's protocol. Further precipitation of RNA and ribosomal RNA cleanup was achieved using the MICROBExpress bacterial mRNA purification Kit (Ambion, AM1905) according to the manufacturer's protocol. RNA was finally suspended in 10 μL RNAse free water. The concentration was determined using a Nanodrop 2000 (Thermo Scientific) and quality was checked by visualization on agarose gels.

RNA-Seq

Sequencing libraries were prepared using TruSeq RNA sample preparation kit v2 (Illumina, RS-122-2001) according to the manufacturer's guidelines, checked for quality on an Agilent 2100 Bioanalyzer, and sequenced for 50 cycles from one end on an Illumina HiSeq1000 platform at the Centre for Cellular and Molecular Platforms, Bangalore. The RNA-Seq data is summarized in Table S3.

qRT-PCR for RNA-Seq validation
qRT–PCR was carried out using specific primers to selected mRNA targets (Table S2 and S7). 5 ng of RNA was used for each RT-PCR reaction. TAKARA One-step SYBR PrimeScript RT-PCR kit II (RR086A) was used according to the manufacturer’s protocol, on an Applied Biosystems ViiA 7 Real-Time PCR system.

Western Blotting

Cells were grown as for RNA-seq. For stationary phase samples, 5 ml of culture was harvested by centrifugation. For mid-exponential phase, 10 ml was harvested. Lysates were prepared and protein concentration was estimated using BCA assay (Thermo Fisher Scientific, 23227). Lysates containing equal amounts of protein were loaded onto an SDS-PAGE gel. Proteins were electroblotted onto a nitrocellulose membrane and probed with mouse primary antibody against the protein of interest followed by horseradish peroxidase-conjugated anti-mouse secondary antibody. The primary antibodies used were: Mouse monoclonal antibody to RpoB (Neoclonle, WP023), Mouse monoclonal antibody to \(\sigma^{70} \) (Neoclonle, WP004), Mouse monoclonal antibody to \(\sigma^{38} \) (Neoclonle, WP009), Mouse monoclonal anti-FLAG antibody (Sigma-Aldrich, F3165), Mouse monoclonal antibody to GroEL (Abcam, ab82592). Bands were visualized using SuperSignal West Dura Chemiluminescent Substrate (Thermo Fisher Scientific, 34076) and imaged using an ImageQuant LAS 4000 system (GE Healthcare Life Sciences). Band intensities were quantified using ImageJ (http://imagej.nih.gov/ij).
Cloning

A segment of DNA containing the ssrS gene, both its upstream promoters and its downstream terminator was amplified from MG1655 genomic DNA by PCR using specific primers (Table S8), and cloned into the pCR2.1-TOPO vector using the TOPO TA Cloning Kit (Invitrogen, K4500), to produce the circular plasmid pTOPO-ssrS. pTOPO-ssrS was digested with EcoRI to remove the insert, and the digested vector was eluted and self-ligated to produce the circular empty vector pTOPO-EV.

Data sources

The E. coli K-12 MG1655 genome was downloaded from NCBI (NC_000913.2). Gene coordinates were taken from RegulonDB v8.0 (53). Lists of σ^{38} target genes and ppGpp regulated genes were obtained from (18) and (54) respectively. Previous lists of genes regulated by 6S RNA were obtained from (30) and (33). Coordinates of RNA polymerase binding regions and their occupancy were obtained from (36). A list of 501 genes under the control of constitutive σ^{70} promoters was obtained from (34). Of these, we selected 270 genes which were not regulated by σ^{38} or other sigma factors according to RegulonDB (53), (18), or our RNA-Seq data from the σ^{38} knockout.
Data Analysis

RNA-Seq reads were mapped to the *E. coli* K-12 MG1655 genome using BWA (55), and reads mapping uniquely were used for further analysis. The number of reads mapping to each gene was calculated and a matrix of read counts was generated with 50 columns, one per sample, and one row per gene. This matrix was fed into the Bioconductor package DESeq (56) for differential expression analysis. Genes with <= 10 reads mapping to them under all conditions were excluded from all analyses and plots. All statistical analyses were performed in R version 3.0.1.

Mathematical model

The reactions shown in Figure 6A can be represented by a set of differential equations that determine how the dynamical variables (levels of sigma factors, holoenzymes, etc.) change with time. These equations are given in Text S2. We are interested in steady-state conditions as the timescales on which these reactions occur is much faster than typical timescales of cell division, or processes such as stress responses in stationary phase. Therefore, it is reasonable to assume that the levels of sigma factors, holoenzymes, etc., are in quasi steady-state in the cell. Parameters that determine the specific steady-state include the dissociation constants of the various complexes, the total levels of Rsd, 6S RNA, E, sigma factors, and some others, listed in Table 2 with their default values. Some values are altered in specific simulations as mentioned in
the results. The model of holoenzyme formation (shaded in Figure 6A) describes the following reactions:

\[E + \sigma^{70} \rightleftharpoons E\sigma^{70} \]
\[E + \sigma^{38} \rightleftharpoons E\sigma^{38} \]
\[Rsd + \sigma^{70} \rightleftharpoons Rsd - \sigma^{70} \]
\[6SRNA + E\sigma^{70} \rightleftharpoons 6SRNA - E\sigma^{70} \]

In steady state, the following equations must be fulfilled:

\[\frac{[E][\sigma^{70}]}{[E\sigma^{70}]} = K_{E\sigma^{70}} \]
(Equation 1)

\[\frac{[E][\sigma^{38}]}{[E\sigma^{38}]} = K_{E\sigma^{38}} \]
(Equation 2)

\[\frac{[Rsd][\sigma^{70}]}{[Rsd - \sigma^{70}]} = K_{Rsd} \]
(Equation 3)

\[\frac{[6SRNA][E\sigma^{70}]}{[6SRNA - E\sigma^{70}]} = K_{6S} \]
(Equation 4)

\[E_{total} = [E] + [E\sigma^{70}] + [E\sigma^{38}] + [6SRNA - E\sigma^{70}] \]
(Equation 5)
Steady-state levels of the dynamical variables were obtained from the above equations both by solving them numerically and by integrating the corresponding differential equations until they reached steady-state.

The model with DNA (represented by the full schematic in Figure 6A) includes, in addition, the following reactions:

\[
\sigma_{\text{total}}^{70} = [\sigma^{70}] + [E\sigma^{70}] + [Rsd - \sigma^{70}] + [6SRNA - E\sigma^{70}]
\] \hspace{1cm} \text{(Equation 6)}

\[
\sigma_{\text{total}}^{38} = [\sigma^{38}] + [E\sigma^{38}]
\] \hspace{1cm} \text{(Equation 7)}

\[
Rsd_{\text{total}} = [Rsd] + [Rsd - \sigma^{70}]
\] \hspace{1cm} \text{(Equation 8)}

\[
6SRNA_{\text{total}} = [6SRNA] + [6SRNA - E\sigma^{70}]
\] \hspace{1cm} \text{(Equation 9)}

\[
E + DNA \Rightarrow EDNA
\]

\[
E\sigma^{70} + DNA \Rightarrow E\sigma^{70}DNA
\]

\[
E\sigma^{38} + DNA \Rightarrow E\sigma^{38}DNA
\]

\[
E\sigma^{70} + P_{70} \Rightarrow E\sigma^{70}P_{70} \overset{c}{\rightarrow} E_{e70} + \sigma^{70} + P_{70}
\]

\[
E\sigma^{38} + P_{38} \Rightarrow E\sigma^{38}P_{38} \overset{c}{\rightarrow} E_{e38} + \sigma^{38} + P_{38}
\]

\[
E_{e70} \overset{c}{\rightarrow} E + mRNA_{70}
\]

\[
E_{e38} \overset{c}{\rightarrow} E + mRNA_{38}
\]
Here, \(c \) represents the rate of promoter clearance and \(e \) represents the rate of transcript elongation. At steady state these fulfil the following equations, in addition to equations (1) - (4) and (8) – (9). \(K_{NS} \) represents the dissociation constant for non-specific binding of RNA polymerase to DNA, which we assume is equal for \(E \), \(E\sigma^{70} \) and \(E\sigma^{38} \).

\[
\frac{[E][DNA]}{[EDNA]} = \frac{[E\sigma^{70}][DNA]}{[E\sigma^{70}DNA]} = \frac{[E\sigma^{38}][DNA]}{[E\sigma^{38}DNA]} = K_{NS} \quad \text{(Equation 10)}
\]

\[
\frac{[E\sigma^{70}][P_{70}]}{[E\sigma^{70}P_{70}]} = \frac{[E\sigma^{38}][P_{38}]}{[E\sigma^{38}P_{38}]} = K_{E\sigma P} \quad \text{(Equation 11)}
\]

\[
E_{total} = [E] + [E\sigma^{70}] + [E\sigma^{38}] + [6SRNA - E\sigma^{70}] + [EDNA] + [E\sigma^{70}DNA] + [E\sigma^{38}DNA] + [E\sigma^{70}P_{70}] + [E\sigma^{38}P_{38}] + [E_{e70}] + [E_{e38}] \quad \text{(Equation 12)}
\]

\[
\sigma_{total}^{70} = [\sigma^{70}] + [E\sigma^{70}] + [Rsd - \sigma^{70}] + [6SRNA - E\sigma^{70}] + [E\sigma^{70}DNA] + [E\sigma^{70}P_{70}] \quad \text{(Equation 13)}
\]

\[
\sigma_{total}^{38} = [\sigma^{38}] + [E\sigma^{38}] + [E\sigma^{38}DNA] + [E\sigma^{38}P_{38}] \quad \text{(Equation 14)}
\]

\[
DNA_{total} = [DNA] + [EDNA] + [E\sigma^{70}DNA] + [E\sigma^{38}DNA] \quad \text{(Equation 15)}
\]

\[
P_{70_{total}} = [P_{70}] + [E\sigma^{70}P_{70}] \quad \text{(Equation 16)}
\]

\[
P_{38_{total}} = [P_{38}] + [E\sigma^{38}P_{38}] \quad \text{(Equation 17)}
\]
Here, steady-state levels were obtained by integrating the corresponding differential equations until they reached steady-state.

Accession Numbers

RNA-Seq data have been deposited with NCBI GEO under the accession number GSE74809.

Acknowledgments

We thank the Centre for Cellular and Molecular Platforms for Illumina sequencing, CGSC for strains and plasmids, and Prof. Satyajit Mayor's laboratory for the pCR2.1-TOPO vector. We thank Prof. Dipankar Chatterji, Prof. Akira Ishihama, Prof. Karen Wassarman, Prof. Steve Busby, Dr. Dasaradhi Palakodeti, and Prof. M.M. Panicker for discussions.

A.S.N. is supported by the NCBS Young Investigator and Ramanujan Fellowships. S.K. is funded by the Simons Foundation. A.L. is supported by the NCBS graduate programme fellowship.

Funding Statement

This work was supported by core NCBS funds and by DBT grant BT/PR3695/BRB/10/979/2011 from the Department of Biotechnology, Government of India.
References

Table 1: Cellular concentrations of RNA polymerase, sigma factors, Rsd and 6S RNA.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Exponential</th>
<th>Stationary</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core RNA Polymerase</td>
<td>~4.3 μM</td>
<td>~4.3 μM</td>
<td>(9)</td>
</tr>
<tr>
<td>σ^{70}</td>
<td>~12.1 μM</td>
<td>~12.0 μM</td>
<td></td>
</tr>
<tr>
<td>σ^{38}</td>
<td>Not Detected</td>
<td>~2.7 μM</td>
<td></td>
</tr>
<tr>
<td>Rsd</td>
<td>~5.5 μM</td>
<td>~10.4 μM</td>
<td></td>
</tr>
<tr>
<td>6S RNA</td>
<td>~1000 molecules/cell</td>
<td>~10,000 molecules/cell</td>
<td>(28)</td>
</tr>
</tbody>
</table>

Table 2: Default values of parameters used for simulations. Wherever possible, values used are specific to stationary phase. These values are discussed in Text S1.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Meaning</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>Average cell volume</td>
<td>10^{-15} L</td>
<td>(57)</td>
</tr>
<tr>
<td>E_{total}</td>
<td>Total cellular concentration of RNA Polymerase</td>
<td>4.3 μM</td>
<td>(9)</td>
</tr>
<tr>
<td>$\sigma_{70\text{total}}$</td>
<td>Total cellular concentration of σ_{70}</td>
<td>12.0 μM</td>
<td></td>
</tr>
<tr>
<td>$\sigma_{38\text{total}}$</td>
<td>Total cellular concentration of σ_{38}</td>
<td>2.7 μM</td>
<td></td>
</tr>
<tr>
<td>Rsd$_{\text{total}}$</td>
<td>Total cellular concentration of Rsd</td>
<td>10.4 μM</td>
<td></td>
</tr>
<tr>
<td>6S RNA$_{\text{total}}$</td>
<td>Total cellular concentration of 6S RNA</td>
<td>13 μM</td>
<td>(28)</td>
</tr>
<tr>
<td>DNA$_{\text{total}}$</td>
<td>Nonspecific binding sites per cell</td>
<td>4.6×10^6</td>
<td>MG1655</td>
</tr>
<tr>
<td>P_{70}, P_{38}</td>
<td>σ-cognate promoters per cell</td>
<td>200</td>
<td>(38)</td>
</tr>
<tr>
<td>$K_{E\sigma_{70}}$</td>
<td>Dissociation constant for E - σ_{70} binding</td>
<td>3.3 nM</td>
<td>(19)</td>
</tr>
<tr>
<td>$K_{E\sigma_{38}}$</td>
<td>Dissociation constant for E - σ_{38} binding</td>
<td>15.2 nM</td>
<td></td>
</tr>
<tr>
<td>K_{NS}</td>
<td>Dissociation constant for nonspecific binding of 10^{-4} M</td>
<td></td>
<td>(58)</td>
</tr>
<tr>
<td>K_{Rsd}</td>
<td>Dissociation constant for Rsd - σ_{70} binding</td>
<td>32 nM</td>
<td>(59)</td>
</tr>
<tr>
<td>K_{6S}</td>
<td>Dissociation constant for 6S RNA - Eσ_{70} binding</td>
<td>131 nM</td>
<td>(60)</td>
</tr>
<tr>
<td>K_{EoP}</td>
<td>Dissociation constant for holoenzyme - promoter binding</td>
<td>10^{-7} M</td>
<td>(61)</td>
</tr>
<tr>
<td>Operon length</td>
<td>Average operon length</td>
<td>1000 nt</td>
<td>(62)</td>
</tr>
<tr>
<td>c</td>
<td>Rate of promoter clearance</td>
<td>0.005 s$^{-1}$</td>
<td>(38, 63)</td>
</tr>
<tr>
<td>e</td>
<td>Rate of escape from elongation</td>
<td>0.021 s$^{-1}$</td>
<td>(64)</td>
</tr>
</tbody>
</table>
Figure 1

A) Schematic showing the binding activity of Rsd and 6S RNA. B) Boxplot of log2 fold change in gene expression (Δrsd/wild-type, EE phase) for 313 genes whose expression is reduced at least twofold in ΔrhoS/wild-type in EE phase, compared to all other genes. C) Boxplot of log2 fold change in gene expression (Δrsd/wild-type, stationary phase) for 634 genes whose expression is reduced at least twofold in ΔrhoS/wild-type in stationary phase, compared to all other genes. p-values are for Wilcoxon Test.
Figure 2: A) Venn diagram showing genes whose expression is increased at least twofold in ΔssrS relative to wild-type, in different phases of growth. B) Venn diagram showing genes whose expression is reduced at least twofold in ΔssrS relative to wild-type, in different phases of growth. C) Schematic of plasmid pTopo-ssrS, used for overexpressing 6S RNA. D) Fold change in expression (qRT-PCR) of ssrS (dark gray) and fau (light gray) RNA in wild-type (both set to 1), ΔssrS, wild-type transformed with empty vector, and wild-type transformed with pTopo-ssrS, during stationary phase. Data represent mean +/- SEM for 3 biological replicates.
Figure 3: A) Boxplot of log₂ fold change in gene expression (ΔssrS/wild-type, EE phase) for 313 genes whose expression is reduced at least twofold in ΔrpoS/wild-type in EE phase, compared to all other genes. B) Boxplot of log₂ fold change in gene expression (ΔssrS/wild-type, stationary phase) for 634 genes whose expression is reduced at least twofold in ΔrpoS/wild-type in stationary phase, compared to all other genes. P-values are for Wilcoxon Test.
Figure 4

A) \log_2 fold increase in 6S RNA levels in wild-type *E. coli* over successive growth phases (relative to its expression in EE phase), based on RNA-Seq. B) \log_2 fold change in *rpoB* gene expression in ΔssrS/wild-type, in successive growth phases. C) \log_2 fold change in the expression of 46 ribosomal protein genes in ΔssrS/wild-type, in successive growth phases. D) \log_2 fold change in *crl* expression in ΔssrS/wild-type, in successive growth phases. E) Western blot for 3xFLAG-tagged Rsd in wild-type and ΔssrS backgrounds, in mid-exponential and stationary phases. F) Boxplots showing the wild-type expression level of genes that are reduced >=2-fold in ΔssrS/wild-type, genes that are not differentially expressed in ΔssrS, and genes that are increased >=2-fold in ΔssrS/wild-type, during stationary phase. G) Boxplots showing the RNA polymerase occupancy (measured by ChIP-chip) of promoters belonging to genes that are reduced >=2-fold in ΔssrS/wild-type, genes that are not differentially expressed in ΔssrS, and genes that are increased >=2-fold in ΔssrS/wild-type, during stationary phase. Only genes that were the first genes in their transcription unit, and were associated with a single RNA polymerase binding site, were included in (G). All p-values are for Wilcoxon Test.
Figure 5: Scatterplots of \log_2 fold change in gene expression in the $\Delta rsd\Delta ssrS$ double knockout versus the sum of \log_2 fold changes in the Δrsd and $\Delta ssrS$ single knockouts, for each gene, in A) Early exponential and B) Stationary phase. Blue points represent genes that show differential expression (\geq2-fold increase or decrease, FDR-adjusted p-value<0.05) in the double knockout, but less than twofold change in expression in both single knockouts added together.
Figure 6

A) Schematic of the model. Shaded area represents reactions involved in holoenzyme formation (without DNA). B) (i) Steady-state levels of Eo^{70} (black) and Eo^{38} (gray), computed from equations (1) - (9), as a function of total Rsd, when 6S RNA = 0. (ii) Same when total 6S RNA = 13 μM. (iii) Steady-state levels of the 6S RNA-Eo^{70} complex, as a function of total Rsd. (iv) Steady-state rate of transcription from Eo^{70} dependent promoters (black) and Eo^{38} dependent promoters (gray), as a function of total Rsd. Vertical dashed lines represent wild-type cellular concentrations in stationary phase. (v) Steady-state rate of transcription from Eo^{70} dependent promoters (black) and Eo^{38} dependent promoters (gray) in the wild-type, absence of Rsd, and simulated Rsd knockout. C) (i) Steady-state levels of Eo^{70} (black) and Eo^{38} (gray), computed from equations (1) - (9), as a function of total 6S RNA. (ii) Steady-state rate of transcription from Eo^{70} dependent promoters (black) and Eo^{38} dependent promoters (gray), as a function of total 6S RNA. Vertical dashed lines represent wild-type cellular concentrations in stationary phase. (iii) Steady-state rate of transcription from Eo^{70} dependent promoters (black bars) and Eo^{38} dependent promoters (gray bars) in the wild-type, absence of 6S RNA, and simulated 6S RNA knockout.
Supplementary Material Legends

Figure S1: Sample growth curves of wild-type *E. coli* and the mutant strains used for RNA-Seq. Overnight cultures were diluted 1:100 in fresh M9 Glucose medium and growth was estimated by measuring optical density at 600 nm.

Figure S2: (A) Boxplots of log₂ fold change in gene expression (Δrsd/wild-type) for genes whose expression is significantly reduced in ΔrpoS in the indicated growth phase, compared to all other genes. (B) Boxplots of log₂ fold change in gene expression (Δrsd/wild-type) for reported σ^{38} targets (18) in the indicated growth phase, compared to all other genes. (C) Boxplots of log₂ fold change in gene expression (Δrsd/wild-type) for genes whose expression is significantly increased in ΔrpoS in the indicated growth phase, compared to all other genes. p-values are for Wilcoxon Test.

Figure S3: Boxplots of log₂ fold change in gene expression (Δrsd/wild-type) for 270 genes whose expression is controlled by constitutive σ^{70}-dependent promoters, compared to all other genes, in the indicated growth phase. p-values are for Wilcoxon Test.

Figure S4: Western blot showing expression of σ^{38} (RpoS) during stationary phase, in the five strains used for RNA-Seq. GroEL was used as a loading control.
Figure S5: (A) Boxplots of log$_2$ fold change in gene expression (ΔssrS/wild-type) for genes whose expression is significantly reduced in ΔrpoS in the indicated growth phase, compared to all other genes. (B) Boxplots of log$_2$ fold change in gene expression (ΔssrS/wild-type) for reported σ38 targets (18) in the indicated growth phase, compared to all other genes. (C) Boxplots of log$_2$ fold change in gene expression (ΔssrS/wild-type) for genes whose expression is significantly increased in ΔrpoS in the indicated growth phase, compared to all other genes. p-values are for Wilcoxon Test.

Figure S6: Boxplots of log$_2$ fold change in gene expression (ΔssrS/wild-type) for 270 genes whose expression is controlled by constitutive σ70-dependent promoters, compared to all other genes, in the indicated growth phase. p-values are for Wilcoxon Test.

Figure S7: Boxplots of log$_2$ fold change in gene expression (ΔssrS/wild-type) during the transition to stationary phase, for 710 genes repressed by ppGpp, 3159 genes unaffected by ppGpp, and 704 genes activated by ppGpp (54). p-values are for Wilcoxon Test.

Figure S8: Heatmaps showing the log$_2$ fold change in expression, in successive growth phases, of (A) 16 genes whose expression was increased in ΔssrS/wild-type, with the magnitude of this increase increasing in successive growth phases, and (B) 20 genes whose expression was reduced in ΔssrS/wild-type, with the magnitude of this reduction increasing in successive growth phases.
Figure S9: Western blot showing expression of RNA polymerase β subunit (RpoB) during stationary phase, in the five strains used for RNA-Seq. GroEL was used as a loading control.

Figure S10: (A) Boxplots of log₂ fold change in gene expression (ΔssrS/wild-type) for genes as a function of the number of nucleotides in their promoter -35 sequence that match to consensus, for a set of 312 mapped σ⁷⁰ promoters, based on the data of (30) (B) Boxplots showing log₂ fold change in expression (ΔssrS/wild-type) of the same genes in our dataset. (C) Boxplots showing log₂ fold change in gene expression (ΔssrS/wild-type) for 77 genes whose promoters have a weak -35 element and extended -10 element, compared to 72 genes with a weak -35 element only, based on the data of (30) (D) Boxplots showing log₂ fold change in gene expression (ΔssrS/wild-type) for the same genes in our dataset. p-values are for Wilcoxon Test.

Figure S11: (A) Boxplots of log₂ fold change in gene expression (ΔrpoSΔssrS/wild-type) for genes whose expression is significantly reduced in ΔrpoS in the indicated growth phase, compared to all other genes. (B) Boxplots of log₂ fold change in gene expression (ΔrpoSΔssrS/wild-type) for reported σ³⁸ targets (18) in the indicated growth phase, compared to all other genes. (C) Boxplots of log₂ fold change in gene expression (ΔrpoSΔssrS/wild-type) for genes whose expression is significantly increased in ΔrpoS in the indicated growth phase, compared to all other genes. p-values are for Wilcoxon Test.
Figure S12: (A) \(\log_2\) fold change in gene expression of \(rpoB\) in successive growth phases, in \(\Delta ssrS/wild-type\) (black) and \(\Delta rsd\Delta ssrS/wild-type\) (blue) (B) Boxplots showing \(\log_2\) fold change in gene expression of 46 ribosomal protein-encoding genes in successive growth phases, in \(\Delta ssrS/wild-type\) (black) and \(\Delta rsd\Delta ssrS/wild-type\) (C) \(\log_2\) fold change in gene expression of \(crl\) in successive growth phases, in \(\Delta ssrS/wild-type\) (black) and \(\Delta rsd\Delta ssrS/wild-type\) (blue). (D) Boxplots showing the wild-type expression level of genes that are downregulated by twofold or more, genes that are not differentially expressed, and genes that are upregulated by twofold or more, in \(\Delta ssrS/wild-type\) (black) and \(\Delta rsd\Delta ssrS/wild-type\) (blue) during stationary phase.

Figure S13: (A) Steady-state rate of transcription from \(E\sigma^{70}\) dependent promoters (black) and \(E\sigma^{38}\) dependent promoters (gray), as a function of total \(\sigma^{38}\), in the absence of Rsd. (B) Steady-state rate of transcription from \(E\sigma^{70}\) dependent promoters (black) and \(E\sigma^{38}\) dependent promoters (gray), as a function of total Rsd. Vertical dashed lines represent wild-type cellular concentrations in stationary phase.

Figure S14: A schematic showing various pathways by which Rsd and 6S RNA have been proposed to regulate RNA polymerase. Bold lines represent sequestration into inactive complexes. Blue lines represent pathways which are affected only in the Rsd-6S RNA double knockout. The three arrows connecting Rsd and 6S RNA show that Rsd inhibits expression of 6S RNA (in stationary phase) and activates it (in ME phase), while 6S RNA increases expression of Rsd. The question mark indicates the possibility that 6S RNA is autoregulatory.
Table S1: Strains and plasmids used in this study

Table S2: Primers used for knockouts

Table S3: Primers used for flag-tagging

Table S4: Primers used for detection of knockouts

Table S5: Summary of RNA-Seq

Table S6: Primers used for qRT-PCR validation

Table S7: Results of qRT-PCR validation

Table S8: Primers used for cloning

Text S1: Selection of model parameters

Text S2: Differential Equations for Model