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ABSTRACT

Ancient DNA studies have revolutionised the study of extinct species and populations, providing 

insights on phylogeny, phylogeography, admixture and demographic history. However, inferences

on behaviour and sociality have been far less frequent. Here, we investigate the complete 

mitochondrial genomes of extinct Late Pleistocene cave bears and middle Holocene brown bears 

that each inhabited multiple geographically proximate caves in northern Spain. In cave bears, we 

find that, although most caves were occupied simultaneously, each cave almost exclusively 

contains a unique lineage of closely related haplotypes. This remarkable pattern suggests extreme

fidelity to their birth site in cave bears, best described as homing behaviour, and that cave bears 

formed stable maternal social groups at least for hibernation. In contrast, brown bears do not 

show any strong association of mitochondrial lineage and cave, suggesting that these two closely 

related species differed in aspects of their behaviour and sociality. This difference is likely to 

have contributed to cave bear extinction, which occurred at a time in which competition for caves

between bears and humans was likely intense and the ability to rapidly colonise new hibernation 

sites would have been crucial for the survival of a species so dependent on caves for hibernation 

as cave bears. Our study demonstrates the potential of ancient DNA to uncover patterns of 

behaviour and sociality in ancient species and populations, even those that went extinct many tens

of thousands of years ago.
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INTRODUCTION

Behaviour and sociality represent key mechanisms allowing populations to rapidly adapt to 

changing environments, to better exploit available resources, and also to resist pressures such as 

predation or climatic extremes that may negatively affect survival probability. Conversely, some 

behaviours could be maladaptive in certain contexts, particularly when populations are exposed to

new and/or rapidly changing selective pressures, and may ultimately lead to population or even 

species extinction. Ancient animal remains can hold information on their behaviour and sociality. 

Spatial and temporal patterns of association among individuals can be investigated using standard

paleontological and isotopic methods, and their relatedness can – at least in principle – be 

determined using ancient DNA approaches. The later, however, may represent a considerable 

technical challenge, as advanced DNA degradation will complicate recovery of suitable data that 

allows fine-scale resolution of genetic relationships among sufficient numbers of individuals to 

achieve statistical power.

Bears that lived in Eurasia during the Pleistocene represent a group that may be amenable to 

behavioural investigations using ancient DNA. Two major species (or species complexes) were 

widespread and sympatric in Pleistocene Eurasia: brown bears (Ursus arctos), that survived 

through the last glacial maximum (LGM) and are currently widespread across the entire Holarctic

region; and the cave bear (Ursus spelaeus complex), an iconic representative of the Pleistocene 

megafauna, that went extinct prior to the LGM (Pacher & Stuart 2009; Stiller et al. 2010; 2014). 

For cave bears in particular, their habit to hibernate in caves has resulted in assemblages 

consisting of the bones of thousands of individuals at some sites, providing the opportunity to 
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investigate uniquely well-defined fossil populations, deposited within an environment that 

enhances DNA preservation (Hofreiter et al. 2015). Although ancient brown bear remains 

typically occur at a much lower frequency in caves in comparison to cave bears, comprehensive 

palaeontological surveys of some caves have produced sufficient samples for population-level 

analysis (e.g. in Kurten 1968).

The factors that drove the cave bear to extinction have been subject to considerable study and 

discussion (Kurten 1968, Grayson & Delpech 2003; Pacher & Stuart 2009; Stiller et al. 2010). In 

agreement with palaeontological data, genetic studies of cave bears have found high genetic 

diversity and a large and constant population size until 50,000 yBP, followed by a decrease until 

its ultimate extinction around 24,000 yBP (Pacher & Stuart 2009; Stiller et al. 2010; 2014). Thus, 

the onset of decline of cave bear populations would have started around 25,000 years before the 

LGM, and is therefore not associated with any periods of substantial climatic change in Europe 

(Stiller et al. 2010; 2014). Brown bears, in contrast, show no evidence of population size changes 

coinciding with the cave bear population decline (Stiller et al. 2010). It has been argued that 

human activities played a major role in cave bear extinction (Grayson & Delpech 2003; Knapp et

al. 2009; Münzel & Conard 2004; Bon et al. 2011; Stiller et al. 2014). However, explanations of 

why human activities could have so profoundly affected cave bear populations and not brown 

bear populations remain elusive. Differences in behaviour between the two species may have 

played a role, but identifying such differences is challenging because many aspects of cave bear 

behaviour remain uncertain. For example, paleontological studies of some cave bear caves have 

identified multiple depressions (hibernation beds or bauges, as described by Koby in 1953) in the 
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cave floor that are thought to have been formed by hibernating bears. While this suggests 

communal hibernation, it is uncertain whether these were social or even family groups, or rather 

random assemblages of individuals forced together through competition for hibernation sites. 

Although genetic data could allow testing of such hypotheses, only a few studies have examined 

the population structure of cave bears at a local – i.e. individual cave – scale (Orlando et al. 2002;

Richards et al. 2008; Hofreiter et al. 2004; Bon et al. 2011). Moreover, these studies were all 

based on short mtDNA fragments, which does not allow fine scale resolution of the genetic 

relationship between individuals.

In this study, we investigate complete mitochondrial genome sequences generated from the 

subfossil remains of multiple cave bears and brown bears from several caves in the North of 

Spain (Fig. 1). Four of the cave bear caves are located in close proximity (within a radius of 

10km) within the Serra do Courel mountains (NW Spain), while the fifth one is located 450 km 

away in Navarra (NE Spain). The brown bear caves are also in close proximity (within a radius of

50km). In all cases, there are no apparent topographic barriers separating caves from one another. 

Thus, for such large bodied and presumably highly mobile mammals as cave bears and brown 

bears, movement between these caves would, in general, not have represented any significant 

challenge. In cave bears, we find that, even though caves were occupied simultaneously, each 

cave almost exclusively contained a unique clade of closely related haplotypes. This remarkable 

pattern suggests that cave bears returned to the cave where they were born and formed stable 

maternal social groups for hibernation. In brown bears, however, no such pattern is found 

suggesting greater flexibility with regard to hibernation site in this closely related species. We 
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discuss the implications of these behavioural differences for the extinction of the cave bear, in 

addition to the wider potential of ancient DNA for the study of behavioural ecology, sociality, and

extinction.

MATERIALS AND METHODS

Methods overview

We generated mitogenome sequences of cave bears and brown bears from their skeletal remains 

found in the caves shown in Figure 1. These sequences were used alongside published sequences 

obtained from GenBank to compare the maternal relatedness of individuals occurring within 

caves with that occurring among caves using haplotype network analysis, phylogenetic analysis 

and trait-phylogeny association tests. Finally, the ages of individuals were estimated using a 

combination of 14C and molecular dating. In particular, we investigated whether the occupation of

caves was likely simultaneous, or instead temporally separated.

All but one of the novel Spanish bear mitogenome sequences reported here were obtained in a 

single experiment (we refer to as Experiment 1) that used hybridisation capture to enrich 

sequencing libraries for mtDNA prior to high-throughput sequencing. The details of Experiment 1

are reported below. A single Spanish cave bear sequence (sample E-VD-1838), in addition to 

sequences from seven bears from elsewhere in Europe, were obtained in separate experiments 

that are described in Section 1 of the Supporting Information.
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Sampling locations

The focal specimens used in this study were excavated in caves within karstic systems in the 

north-west of Spain, and were identified morphologically as either U. spelaeus or U. arctos. All 

of these sites represent natural accumulations and none of the remains are in archaeological 

context. Individual samples originated from different individual animals, identified based on age, 

sex or spatial distribution of the remains. Initially, specimens from 19 cave sites were 

investigated. These comprised 85 individuals from nine caves containing cave bear remains, and 

24 individuals from ten caves containing brown bear remains. Many of these failed initial 

screening to identify samples that were likely permit recovery of the complete mitogenome 

sequence (see below), which limited sampling to five brown bear caves and five cave bear caves 

(shown in Fig. 1). Full details of the caves and samples investigated are provided in Section 2, 

Tables S1 & S2, and Fig. S1 of the Supporting Information.

DNA extraction and sample screening

All pre-amplification aDNA analyses were performed in dedicated aDNA laboratories at the 

University of York (UK) or at the University of Potsdam (Germany). The compact part of bones, 

either femur, tibia, ribs, skull fragments or teeth, were utilised for DNA extraction. Prior to 

extraction, samples were UV irradiated for 10 minutes on each side and disposable cutting disks 

attached to a rotating electric drill were used to remove the outermost bone surface. For each 

sample, around 250 mg of cleaned bone was ground to powder using ceramic mortar and pestles. 

DNA extraction followed the protocol of Rohland et al. (2010).
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DNA extracts were screened for likely presence and quality of endogenous DNA by attempting to

PCR amplify 104bp and 126bp fragments of the mitochondrial control regions of cave bears and 

brown bears, respectively, using the primers described in Hofreiter et al. (2004) and a novel 

brown bear primer, UaF7 (5'-TCGTGCATTAATGGCGTG-3'). Amplification was assessed using 

agarose gel eletrophoresis and the authenticity of amplification products verified by Sanger 

sequencing, carried out in both directions using an ABI 3130XL at the Sequencing Service SAI 

(Servicios Centrais de Investigacion, University of A Coruña, Spain), followed by BLAST 

alignment of the consensus sequences.

Sequencing library generation and hybridisation capture

We generated individually barcoded Illumina sequencing libraries using 20μl of those extracts for

which short-amplicon PCR had previously been successful, following the protocol described in 

Meyer & Kircher  (2010 ) with the following modifications. First, the filtration step between the 

blunt end repair and the adapter ligation was substituted by heat inactivation of the enzymes 

(Bollongino et al. 2013; Fortes and Paijmans 2015), in order to reduce the loss of short DNA 

fragments. Second, we used a double index barcoding system in which both the P5 and P7 

adapters include a molecular barcode specific for each sample (Kircher et al. 2011; Fortes and 

Paijmans 2015). This facilitates the identification of chimeric molecules that could be formed 

during PCR amplification of the captured products. Library indexing and amplification involved 

4 replicate parallel PCRs, each using 15 cycles, which were then pooled and purified using silica 

columns (Qiagen, France). The resulting cave bear and brown bear libraries were quantified using
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a Nanodrop Spectrophotometer (Thermo Scientific) and pooled, respectively, in equimolar 

quantities at a final concentration of 2 ng in 520 µl for hybridisation capture.

Hybridisation capture was carried out using 244k DNA SureSelectTM microarrays (Agilent, 

Boblingen, Germany) with 2-fold tiling and 60bp probes. Separate arrays were used for the cave 

bear and brown bear library pools, with probes based on published mitogenome sequences of a 

Western European cave bear (EU327344, Bon et al. 2008) and brown bear (EU497665, Bon et al.

2008), respectively. Hybridisation capture followed the protocol of Hodges et al. (2009) with one 

modification. After the initial round of capture enrichment, library pools were amplified using 

primers IS5 and IS6 (Meyer & Kircher 2010) in 12 parallel PCRs and the resulting products were 

subjected to a second round of capture enrichment, as described in Fortes & Paijmans (2015).

DNA sequencing and data processing

100bp single-end sequencing of mtDNA enriched library pools was carried out on a single lane of

an Illumina HiSeq2000 instrument at the Danish National Sequencing Centre in the University of 

Copenhagen. The resulting BCL files were converted to fastq format using the Illumina base-

calling pipeline (Illumina Pipeline v1.4). The program Cutadapt v1.3 (Martin, 2011) was then 

used to trim any P7 adapter sequences occurring at the 3' ends of reads, and a custom script used 

to identify and discard any reads that did not contain the appropriate P5 index, and then trim the 

index sequence from the remaining reads. Following this procedure, any reads < 25 bp were also 

discarded. The resulting cave bear and brown bear reads were then mapped to their respective 

reference mitogenome sequences used for capture probe design, using bwa-0.5.9 (Li & Durbin 
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2009) with seeding disabled, as suggested by Schubert et al. (2012). The alignment was sorted, 

filtered for minimum mapping quality (-q 30) and PCR duplicates removed using samtools (Li et 

al. 2009). The Mpileup tool in samtools 0.1.19-44428 was used to generate consensus sequences 

and to call polymorphic positions, using the -s option to specify a haploid genome. In order to 

prevent miscalling of polymorphic sites resulting from the presence of postmortem molecular 

damage to the ancient templates, the terminal five nucleotides at both 5' and 3' read ends were 

excluded from SNP calling, and for sites covered by less than 3 reads the bases were only called 

when all reads had the same nucleotide. All polymorphic sites identified in the vcf file were 

further checked by eye on Tablet version 1.13.05.02 (Milne et al. 2013). Read depth and coverage

were determined using GATK (MacKenna et al. 2010). The presence of molecular damage 

characteristic of aDNA was confirmed using the software MapDamage (Ginolhac et al. 2011).

Phylogenetic and network analysis

Only those novel sequences that provided > 70% total coverage of the mitogenome were used in 

subsequent analyses. Novel Spanish sequences were aligned along with seven novel sequences 

from ancient bears found elsewhere in Europe and 174 published mitogenome sequences from 

cave bears, brown bear and polar bears using the program MUSCLE (Edgar & Robert 2004) with 

default settings. A repetitive section of the d-loop was removed from the alignment as this was 

not recovered in many ancient samples and even when present could not be aligned 

unambiguously. All subsequent analyses used this alignment or subsamples of it.

To investigate the phylogenetic relation of Spanish cave bear and brown bear haplotypes to those 
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occurring elsewhere in their respective distributions, we conducted phylogenetic analysis of the 

complete alignment under maximum likelihood (ML) using RAxML-HPC2 8.2.3 (Stamatakis, 

2014) on the CIPRES Portal (Miller et al. 2010) using the American black bear (U. americanus) 

as outgroup. The ML tree was estimated under the GTR+G model and clade support assessed by 

500 bootstrap replicates using the GTR+CAT model.

Networks of Spanish cave bear and brown bear haplotypes were then generated using the median-

joining algorithm implemented in the program NETWORK (fluxus-engineering.com, Bandelt et 

al. 1999). To avoid any confounding effects of missing data on haplotype identification, all 

alignment columns containing missing data and/or alignment gaps were removed for network 

analysis.

We then investigated the strength of association of mitochondrial lineage and cave using trait-

phylogeny association tests that account for phylogenetic uncertainty in the software BaTS 

(Parker et al. 2008). If mitochondrial phylogeny and cave are strongly associated, then the 

inferred number of changes in cave occupation across the phylogeny should be fewer than for a 

random prediction with no such association. We generated a Bayesian posterior sample of trees in

BEAST v. 1.8.2 (Drummond et al. 2012), and then randomised the assignment of individuals to 

caves in order to generate a null distribution of the number of changes in cave occupancy when 

phylogeny and cave show no association. This strength of association was then tested by 

comparing this null distribution to the observed number of changes occurring across the posterior 

sample of trees using the parsimony score (PS) statistic (Slatkin & Maddison 1989). PS is a 
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discrete metric and therefore models changes in cave occupation occurring across the phylogeny 

as discrete events. 

To generate the posterior sample of trees used in trait-phylogeny association tests, the program 

PartitionFinder (Lanfear et al. 2012) was first used to select appropriate partitions and 

substitution models within each alignment (details in Section 2 of the Supporting Information, 

results in Tables S5 & S6, Supporting Information). BEAST analyses involved a coalescent 

Bayesian Skyline population model with unlinked substitution and strict clock models for each 

partition. Non-zero variation in substitution rates was rejected by preliminary runs using relaxed 

clock models. No clock calibrations were applied, and instead the substitution rate of the fastest-

evolving partition was fixed to 1 and substitution rates for the remaining partitions estimated 

relative to the latter partition within open uniform priors between 0–2. MCMC chains ran for 

sufficient length to achieve convergence and sufficient sampling of all parameters (ESS > 200) 

after removal of burn-in, as verified in the program TRACER (Rambaut et al. 2014). 

LOGCOMBINER was used to remove pre-burn-in trees prior to trait-phylogeny association tests.

Dating of cave lineages

Thirty-nine samples were directly 14C dated and 2-sigma calibrated using OxCal 4.2 online 

(accession date: 07/07/2015), based on the IntCal-13 curve (Reimer et al. 2013). For samples that

lacked 14C dates, or were beyond the range of 14C dating, we estimated their ages using a 

Bayesian phylogenetic approach in BEAST (Shapiro et al. 2011). Phylogenetic age estimation 

was conducted individually for each undated cave bear and brown bear based on 14C dated 
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representatives of their respective clades. We additionally tested the reliability of this procedure 

using a crossvalidation method, in which the age of each 14C dated sample was estimated and 

compared to its original 14C age. Due to the large number of individual analyses required, we a 

custom Perl script was used to automate the generation of BEAST input files. In each analysis, 

the posterior distribution of the tip date of the undated sample was sampled within an open 

uniform prior between 0 (present day) and one million years, both of which represent implausible

extremes for the ages of these samples, while fixing the ages of 14C dated samples to the mean 

calibrated date. Substitution rates for all partitions were estimated within open uniform priors 

between 0–5x10-7 substitutions site-1 year-1. Other details of the BEAST analyses were as 

described above. Finally, we generated fully sampled calibrated phylogenies of the cave bear and 

brown bear clades by fixing tip dates to either mean calibrated 14C ages or median phylogenetic 

age estimates.

RESULTS

DNA sequences

PCR screening resulted in successful amplification of mitochondrial control region fragments in 

57 out of 85 cave bear extracts and 23 out of 24 brown bear DNA extracts (details in Table S2, 

Supporting Information), which were then subjected to hybridisation capture enrichment and 

high-throughput sequencing. Mapping of sequence reads to their respective reference 

mitogenome sequences resulted in consensus sequences of 26 cave bears and 15 brown bears that 
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were > 70% complete and used for further analysis (details in Table S4, Supporting Information). 

All datasets showed molecular damage patterns characteristic of ancient DNA (Figs. S2 & S3, 

Supporting Information). For cave bears, we added the sequence from an additional shotgun-

sequenced individual (Section 1, Supporting Information) and previously published sequences 

from four other individuals from the focal caves, bringing the total number of Spanish cave bears 

analysed to 31. 

Phylogenetic analysis supported the inclusion of these Spanish cave bear and brown bear 

sequences within the Western European U. spelaeus cave bear clade and the Western European 

brown bear clade 1 (Fig. S4, Supporting Information), identified by previous phylogeographic 

studies (Hirata et al. 2013; Stiller et al. 2014). Spanish cave bear and brown bear haplotypes were

unique compared to all previously published haplotypes of conspecific bears occurring elsewhere 

in their respective distributions.

Association of mitochondrial DNA and cave

Network analysis of Spanish cave bear haplotypes revealed close relationships between 

haplotypes found within the same cave (Fig. 2a). Most caves contain multiple unique haplotypes 

that are separated from each other by single nucleotide mutations. For example, Eirós and 

Amutxate caves each contain two unique haplotypes differing from one another by a single 

nucleotide mutation. Similarly, five unique and closely related haplotypes were found in A Ceza 

cave, but with the addition of a more divergent haplotype found in a single A Ceza individual 

(sample C7) that is shared with individuals from Arcoia and Liñares. An additional unique 
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haplotype was found in Liñares cave that differs from this shared haplotype by a single nucleotide

mutation. Even considering the occurrence of a single haplotype that is shared among three caves,

an overall pattern of separation of haplotype clusters into caves is clear and obvious. Trait-

phylogeny association tests further confirmed this pattern, showing fewer observed changes in 

cave occupation than expected by random (observed mean 5.9, null mean 18.0, p < 0.001), 

indicating a strong association of Spanish cave bear mitochondrial lineages with particular caves.

In contrast, an obvious segregation of mitochondrial haplotypes among different caves was not 

observed in middle Holocene Spanish brown bears (Fig. 2b). Haplotypes are widely shared 

among caves, with the exception of Pena Paleira, which contains three unique haplotypes, but 

these are not closely related. Trait-phylogeny association tests found the observed number of 

changes in cave occupation to not differ significantly from random (observed mean 6.5, null 

mean 8.2, p = 0.08), indicating a lack of statistically significant association between 

mitochondrial lineage and cave in these middle Holocene Spanish brown bears.

The association of mitochondrial haplotype lineage and cave revealed by network analysis for 

Iberian cave bears, but not for Iberian Holocene brown bears, is also evident from the time-

calibrated phylogenies of their respective clades (Figs. 3 & 4). In addition, the broader geographic

sampling of cave bear haplotypes in this analysis reveals that Spanish haplotypes as a whole are 

not monophyletic, with some cave linages sharing more recent common ancestry with haplotypes 

found in France and/or Germany.
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Dating

14C ages spanned a range of > 40,000 to 28,251 yBP for cave bears and 41,201 to 2,520 yBP for 

brown bears (Table S3, Supporting Information).

Crossvalidation testing of the phylogenetic age estimation procedure resulted in 95% highest 

posterior densities (HPDs) that included the actual 14C age for all brown bears and all but one 

cave bear. Median estimated ages were also very close to the known age in most cases (Figs. S5 

& S6, Supporting Information). These results support the reliability of this approach in estimating

the ages of samples without 14C dates. Furthermore, age estimation for undated samples produced 

unimodal posterior estimates that are consistent with other sources of age information, where 

available, such as samples that were outside the range of 14C dating and those dated by amino acid

racemisation (Table S7, Supporting Information).

Age estimates for cave bears (Fig. 5a) are compatible with the contemporaneous existence of the 

A Ceza, Amutxate, Arcoia and Liñares mitochondrial lineages. Although phylogenetic age 

estimates are associated with substantial uncertainty, the 95% HPDs of age estimates for these 

four caves show considerable overlap and median estimated ages are broadly comparable with 

each other, and with 14C dated samples. The simultaneous occupation of these caves is also 

supported by 14C dating of other specimens not included in this study (Pérez-Rama et al. 2011). In

contrast to these caves, the Eiros mitochondrial lineage appears to have existed more recently and

potentially without temporal overlap with those from other caves, although we do find slight 

overlap of Eiros 14C dates and HPDs from other caves in some cases (Fig. 5b). Generally younger
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14C dates of Eirós in comparison to the other caves have also been reported previously, however, a

single specimen was dated to more than 40,000 yBP (Pérez-Rama et al. 2011), and may therefore 

have existed contemporaneously with individuals from other caves. Unfortunately, this sample 

failed to yield any usable DNA and so its phylogenetic relation to more recent Eirós cave bears 

remains unknown. Caves containing brown bear remains were almost certainly inhabited 

simultaneously. 14C ages and a single phylogenetic estimate indicate temporal overlap in the 

habitation of these five caves between approximately 10,000 and 6,500 yBP (Fig. 5b).

DISCUSSION

Evidence for homing behaviour

Cave bears and brown bears that died in caves in the north of Spain show remarkably contrasting 

patterns of mitochondrial haplotype segregation. While no significant association of 

mitochondrial haplotypes and cave is found in middle Holocene brown bears, in the case of Late 

Pleistocene cave bears each cave contains, almost exclusively, a unique clade of closely related 

haplotypes. This structure exists despite caves being located in close geographic proximity and 

being inhabited simultaneously. We therefore interpret this as evidence of homing behaviour in 

cave bears. This scenario would involve a single intermixing cave bear population within which 

individuals – both males and females – returned to their native caves annually for hibernation, 

that is, the cave in which their mother hibernated and also gave birth, as demonstrated by the 

large amounts of perinatal individuals in the sites (Torres et al. 2002; Pérez-Rama et al. 2011). 
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Such homing behaviour does not exclude mating between bears from different caves, but would 

have sorted the mitochondrial lineages by caves. In contrast, the lack of association between 

mitochondrial haplotype and cave in middle Holocene brown bears rejects this type of homing 

behaviour in this closely related species. This is further supported by studies of extant brown bear

populations which show greater flexibility with regard to hibernation site than inferred here for 

cave bears (e.g. in Naves & Palomero 1993).

Evidence suggests that cave bears hibernated communally (e.g. Philippe & Fosse 2003). Homing 

behaviour would therefore result in non-random groups of close maternal relatives assembled at 

each cave. Thus, this behaviour can be further considered as a form of sociality.  The temporal 

stability of these social groups is demonstrated by the observation of multiple unique haplotypes 

within caves that differ from their nearest relative by a single nucleotide substitution (Fig. 2). 

This suggests that within-cave haplotype variability is the result of nucleotide mutations that 

occurred during the period of cave occupation, most likely over thousands of years. A stepwise 

pattern of haplotype variability within caves has previously been reported for short cave bear 

control region sequences from the Ach valley, south-western Germany (Hofreiter et al. 2007), 

which in light of our finding suggests the potential for similar homing behaviour in that 

population. The temporal stability of cave occupation by cave bears is further demonstrated by 

two morphologically distinct cave bear forms that each occupied separate caves located only a 

few kilometers apart in Austria. These morphotypes sort into respective, genetically divergent 

mitochondrial clades. Despite their close proximity, a previous study found no evidence of 

haplotype exchange between caves even though simultaneous occupation over thousands of 
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years, implying both site fidelity and reproductive isolation (Hofreiter et al. 2004). In the case of 

Spanish cave bears, however, we consider reproductive isolation unlikely due to a lack of any 

obvious morphological separation and relatively low levels of haplotype divergence between 

caves. Our preferred alternative, a single population with homing behaviour, makes specific 

predictions about patterns of nuclear DNA divergence among caves, and obtaining such data 

would be a valuable direction for future cave bear research.

Although we found a clear association of mitochondrial lineage and cave in Spanish cave bears, 

the association is not perfect. Specifically, we found a single haplotype that is shared among three

caves: Liñares, A Ceza and Arcoia. This shared haplotype is common among Liñares individuals, 

and separated from a second Liñares haplotype by a single nucleotide mutation. In the second 

cave, A Ceza, the shared haplotype is considerably diverged from other haplotypes within that 

cave. In the third cave, Arcoia, both samples investigated have the shared haplotype. These later 

samples are the remains of juvenile individuals and no other cave bear remains have been found 

in this cave, raising the possibility that these juveniles (and potentially the A Ceza individual 

carrying the same haplotype) originate from Liñares. Regardless of the origin of this shared 

haplotype, while this pattern does imply some degree of movement between caves,  the overall 

evidence for homing behaviour is clear and substantial. An ability to disperse and occupy other 

caves is further indicated by the sister group relationship found between Eirós cave haplotypes 

and a haplotype from Chauvet cave in France, two caves that were occupied simultaneously (see 

Table S3, Supporting Information; Bon et al. 2008; 2011). Thus, the Eirós haplotype lineage may 

be the result of long distance dispersal by female bears from distant caves, rather than movement 

20

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2016. ; https://doi.org/10.1101/056119doi: bioRxiv preprint 

https://doi.org/10.1101/056119
http://creativecommons.org/licenses/by-nc-nd/4.0/


among localised Spanish caves, which is also consistent with the apparent temporal separation of 

this lineage from the other Spanish caves.

Wider implications

Homing behaviour has wider implications for species survival and conservation. For example, in 

extant black bears (Ursus americanus), it has been discussed as a potential problem for 

repopulation programs, as both females and males are able to track back to their home area after 

being captured by humans and released several kilometres away (Beeman & Pelton, 1976; Rogers

& Lynn 1986; Clark et al. 2002). The same effect has been observed in Asian black bears (Ursus 

thibetanus), where genetic studies showed that 63% of the translocated bears migrate back to 

their original sites (Mukesh et al. 2015). Other well known examples include anadromous fishes, 

whose ability to return to breeding sites is affected by anthropogenic disruption of freshwater 

river systems (e.g. Pess et al. 2014), and similarly in marine turtles, where anthropogenic coastal 

development threatens habitats used for egg deposition (e.g. Wallace et al. 2011). Although 

ancient DNA provides the potential to investigate such behavioural patterns in species that have 

already gone extinct, behavioural inferences based on ancient DNA have been rare (notable 

examples are Huynen et al. 2010; and Allentoft et al. 2015). Our study clearly demonstrates the 

potential utility of ancient DNA in the study of behavioural ecology by revealing evidence of 

homing behaviour in extinct cave bears, and furthermore, through comparison with a closely 

related extant species, we have also uncovered clues on the potential causes of cave bear 

extinction. 
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The role of humans in the extinction of the cave bear has been debated (Grayson & Delpech 

2003; Munzel & Conrad 2004; Knapp et al. 2009; Bon et al. 2011; Stiller et al. 2014), but 

explanations that also account for the survival of the sympatric brown bear have remained 

elusive. It is likely that the high dependence of cave bears on their native caves would have made 

them more sensitive to human competition for caves for several reasons. First, as noted 

previously (Grayson et al. 2003; Stiller et al. 2010), the generally high dependence of cave bears 

on caves for hibernation would have brought them into severe competition with humans (both 

Neanderthals and modern humans). Second, their tendency to come back to the same cave site 

would have made them comparatively predictable prey, which fits to the growing evidence of 

cave bear hunting, again by both Neanderthals and modern humans (Munzel & Conrad 2004; 

Wojtal et al. 2015). And third, this homing behaviour would have prevented a rapid 

recolonisation of empty caves from neighbouring populations. Overall, these factors could have 

contributed to the extinction of the cave bear as modern human populations expanded from 

Eastern to Western Europe, indeed, advancing in the same direction as the subsequent cave bear 

extinction. This is in agreement with recent studies that have questioned the relative contribution 

of Pleistocene climatic changes to cave bear extinction, and suggested instead a major impact of 

human activities (Knapp et al. 2009; Bon et al. 2011; Stiller et al. 2014). Finally, the lack of 

evidence of homing behaviour to their maternal caves in Spanish brown bears, a species that lived

in widespread sympatry with cave bears but survived the human expansion into Western Europe, 

further implicates this behaviour as a factor in the extinction of the cave bear.
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Figure 1. Map of Northern Spain showing locations of the caves investigated in this study. 
Circles represent sites with cave bears. Squares are sites with brown bears. Colours are consistent 
with Fig. 2.

Figure 2. Haplotype networks of A. Iberian cave bears and B. Iberian brown bears, coloured 
according to the cave in which that haplotype was found (indicated next to each network). Circles
are sized relative to haplotype frequency. Dashes along edges indicate single nucleotide 
mutations.

Figure 3. Time calibrated phylogeny of the Western European U. spelaeus cave bear clade. The 
lower scale shows kyBP. Branch labels indicate posterior clade probabilities ≥0.95, except for 
terminal tip clades where labels have been removed for simplicity. Nodes are centered on the 
median estimated divergence time and bars show the 95% HPD. Circles next to taxon names 
indicate Iberian cave bears and are coloured according to cave (consistent with Fig. 2). The U. 
ingressus clade that is sister to the U. spelaeus clade and was utilised for molecular dating is 
shown collapsed for simplicity.

Figure 4. Time calibrated phylogeny of the Western European brown bear clade. The lower scale 
shows kyBP. Branch labels indicate posterior clade probabilities ≥0.95. Circles next to taxon 
names indicate Iberian brown bears and are coloured according to cave (consistent with Fig. 2). 
Two additional representatives of the West European brown bear clade, from Austria (sample 
Uap) and Bulgaria (GenBank Accession AP012591), were analysed and found to form a well 
supported sister lineage to the clade shown here that diverged an estimated 68,401 yBP ago (95% 
HPD 50,409–92,631 yBP). This lineage is not shown in order to better visualise divergence times 
among Iberian brown bear haplotypes.

Figure 5. Time lines of A. Iberian cave bear and B. Iberian brown bear sample ages. Time in yBP
is shown on the Y axes. Each point indicates the estimated age of an individual bear. Black points
are median phylogenetic age estimates and red points are mean calibrated 14C ages.  Error bars
show 95% HPD and calibrated  14C uncertainty for  phylogenetic  age estimates and  14C ages,
respectively.
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